49 CFR 172.102 - Special provisions.

Updated to:October 2013
CONTENT

Title 49: Transportation

Subtitle B: Other Regulations Relating to Transportation

CHAPTER I: PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION

SUBCHAPTER C: HAZARDOUS MATERIALS REGULATIONS

PART 172: HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS

Subpart B: Table of Hazardous Materials and Special Provisions

172.102 - Special provisions.

(a) General. When column 7 of the ? 172.101 table refers to a special provision for a hazardous material, the meaning and requirements of that provision are as set forth in this section. When a special provision specifies packaging or packaging requirements?

(1) The special provision is in addition to the standard requirements for all packagings prescribed in ? 173.24 of this subchapter and any other applicable packaging requirements in subparts A and B of part 173 of this subchapter; and

(2) To the extent a special provision imposes limitations or additional requirements on the packaging provisions set forth in column 8 of the ? 172.101 table, packagings must conform to the requirements of the special provision.

(b) Description of codes for special provisions. Special provisions contain packaging provisions, prohibitions, exceptions from requirements for particular quantities or forms of materials and requirements or prohibitions applicable to specific modes of transportation, as follows:

(1) A code consisting only of numbers (for example, ?11?) is multi-modal in application and may apply to bulk and non-bulk packagings.

(2) A code containing the letter ?A? refers to a special provision which applies only to transportation by aircraft.

(3) A code containing the letter ?B? refers to a special provision that applies only to bulk packaging requirements. Unless otherwise provided in this subchapter, these special provisions do not apply to UN, IM Specification portable tanks or IBCs.

(4) A code containing the letters ?IB? or ?IP? refers to a special provision that applies only to transportation in IBCs.

(5) A code containing the letter ?N? refers to a special provision which applies only to non-bulk packaging requirements.

(6) A code containing the letter ?R? refers to a special provision which applies only to transportation by rail.

(7) A code containing the letter ?T? refers to a special provision which applies only to transportation in UN or IM Specification portable tanks.

(8) A code containing the letters ?TP? refers to a portable tank special provision for UN or IM Specification portable tanks that is in addition to those provided by the portable tank instructions or the requirements in part 178 of this subchapter.

(9) A code containing the letter ?W? refers to a special provision that applies only to transportation by water.

(c) Tables of special provisions. The following tables list, and set forth the requirements of, the special provisions referred to in column 7 of the ? 172.101 table.

(1) Numeric provisions. These provisions are multi-modal and apply to bulk and non-bulk packagings:

Code/Special Provisions

1This material is poisonous by inhalation (see ? 171.8 of this subchapter) in Hazard Zone A (see ? 173.116(a) or ? 173.133(a) of this subchapter), and must be described as an inhalation hazard under the provisions of this subchapter.

2This material is poisonous by inhalation (see ? 171.8 of this subchapter) in Hazard Zone B (see ? 173.116(a) or ? 173.133(a) of this subchapter), and must be described as an inhalation hazard under the provisions of this subchapter.

3This material is poisonous by inhalation (see ? 171.8 of this subchapter) in Hazard Zone C (see ? 173.116(a) of this subchapter), and must be described as an inhalation hazard under the provisions of this subchapter.

4This material is poisonous by inhalation (see ? 171.8 of this subchapter) in Hazard Zone D (see ? 173.116(a) of this subchapter), and must be described as an inhalation hazard under the provisions of this subchapter.

5If this material meets the definition for a material poisonous by inhalation (see ? 171.8 of this subchapter), a shipping name must be selected which identifies the inhalation hazard, in Division 2.3 or Division 6.1, as appropriate.

6This material is poisonous-by-inhalation and must be described as an inhalation hazard under the provisions of this subchapter.8A hazardous substance that is not a hazardous waste may be shipped under the shipping description ?Other regulated substances, liquid or solid, n.o.s.?, as appropriate. In addition, for solid materials, special provision B54 applies.

9Packaging for certain PCBs for disposal and storage is prescribed by EPA in 40 CFR 761.60 and 761.65.

11The hazardous material must be packaged as either a liquid or a solid, as appropriate, depending on its physical form at 55 ?C (131 ?F) at atmospheric pressure.

12In concentrations greater than 40 percent, this material has strong oxidizing properties and is capable of starting fires in contact with combustible materials. If appropriate, a package containing this material must conform to the additional labeling requirements of ? 172.402 of this subchapter.

13The words ?Inhalation Hazard? shall be entered on each shipping paper in association with the shipping description, shall be marked on each non-bulk package in association with the proper shipping name and identification number, and shall be marked on two opposing sides of each bulk package. Size of marking on bulk package must conform to ? 172.302(b) of this subchapter. The requirements of ?? 172.203(m) and 172.505 of this subchapter do not apply.

14Motor fuel antiknock mixtures are:

a. Mixtures of one or more organic lead mixtures (such as tetraethyl lead, triethylmethyl lead, diethyldimethyl lead, ethyltrimethyl lead, and tetramethyl lead) with one or more halogen compounds (such as ethylene dibromide and ethylene dichloride), hydrocarbon solvents or other equally efficient stabilizers; or

b. tetraethyl lead.15This entry applies to ?Chemical kits? and ?First aid kits? containing one or more compatible items of hazardous materials in boxes, cases, etc. that, for example, are used for medical, analytical, diagnostic, testing, or repair purposes. Kits that are carried on board transport vehicles for first aid or operating purposes are not subject to the requirements of this subchapter.

16This description applies to smokeless powder and other propellant powders that are used as powder for small arms and have been classed as Division 1.3C and 1.4C and reclassed to Division 4.1 in accordance with ? 173.56 and ? 173.58 of this subchapter.

19For domestic transportation only, the identification number ?UN1075? may be used in place of the identification number specified in column (4) of the ? 172.101 table. The identification number used must be consistent on package markings, shipping papers and emergency response information.

21This material must be stabilized by appropriate means (e.g., addition of chemical inhibitor, purging to remove oxygen) to prevent dangerous polymerization (see ? 173.21(f) of this subchapter).

22If the hazardous material is in dispersion in organic liquid, the organic liquid must have a flash point above 50 ?C (122 ?F).

23This material may be transported under the provisions of Division 4.1 only if it is so packed that the percentage of diluent will not fall below that stated in the shipping description at any time during transport. Quantities of not more than 500 g per package with not less than 10 percent water by mass may also be classed in Division 4.1, provided a negative test result is obtained when tested in accordance with test series 6(c) of the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter).

24Alcoholic beverages containing more than 70 percent alcohol by volume must be transported as materials in Packing Group II. Alcoholic beverages containing more than 24 percent but not more than 70 percent alcohol by volume must be transported as materials in Packing Group III.

26This entry does not include ammonium permanganate, the transport of which is prohibited except when approved by the Associate Administrator.

28The dihydrated sodium salt of dichloroisocyanuric acid is not subject to the requirements of this subchapter.

29For transportation by motor vehicle, rail car or vessel, production runs (exceptions for prototypes can be found in ? 173.185(e)) of not more than 100 lithium cells or batteries are excepted from the testing requirements of ? 173.185(a)(1) if?

a. For a lithium metal cell or battery, the lithium content is not more than 1.0 g per cell and the aggregate lithium content is not more than 2.0 g per battery, and, for a lithium-ion cell or battery, the equivalent lithium content is not more than 1.5 g per cell and the aggregate equivalent lithium content is not more than 8 g per battery;

b. The cells and batteries are transported in an outer packaging that is a metal, plastic or plywood drum or metal, plastic or wooden box that meets the criteria for Packing Group I packagings; and

c. Each cell and battery is individually packed in an inner packaging inside an outer packaging and is surrounded by cushioning material that is non-combustible, and non-conductive.

30Sulfur is not subject to the requirements of this subchapter if transported in a non-bulk packaging or if formed to a specific shape (for example, prills, granules, pellets, pastilles, or flakes). A bulk packaging containing sulfur is not subject to the placarding requirements of subpart F of this part, if it is marked with the appropriate identification number as required by subpart D of this part. Molten sulfur must be marked as required by ? 172.325 of this subchapter.

31Materials which have undergone sufficient heat treatment to render them non-hazardous are not subject to the requirements of this subchapter.

32Polymeric beads and molding compounds may be made from polystyrene, poly(methyl methacrylate) or other polymeric material.

33Ammonium nitrites and mixtures of an inorganic nitrite with an ammonium salt are prohibited.

34The commercial grade of calcium nitrate fertilizer, when consisting mainly of a double salt (calcium nitrate and ammonium nitrate) containing not more than 10 percent ammonium nitrate and at least 12 percent water of crystallization, is not subject to the requirements of this subchapter.

35Antimony sulphides and oxides which do not contain more than 0.5 percent of arsenic calculated on the total mass do not meet the definition of Division 6.1.

37Unless it can be demonstrated by testing that the sensitivity of the substance in its frozen state is no greater than in its liquid state, the substance must remain liquid during normal transport conditions. It must not freeze at temperatures above ?15 ?C (5 ?F).

38If this material shows a violent effect in laboratory tests involving heating under confinement, the labeling requirements of Special Provision 53 apply, and the material must be packaged in accordance with packing method OP6 in ? 173.225 of this subchapter. If the SADT of the technically pure substance is higher than 75 ?C, the technically pure substance and formulations derived from it are not self-reactive materials and, if not meeting any other hazard class, are not subject to the requirements of this subchapter.39This substance may be carried under provisions other than those of Class 1 only if it is so packed that the percentage of water will not fall below that stated at any time during transport. When phlegmatized with water and inorganic inert material, the content of urea nitrate must not exceed 75 percent by mass and the mixture should not be capable of being detonated by test 1(a)(i) or test 1(a)(ii) in the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter).

40Polyester resin kits consist of two components: A base material (Class 3, Packing Group II or III) and an activator (organic peroxide), each separately packed in an inner packaging. The organic peroxide must be type D, E, or F, not requiring temperature control. The components may be placed in the same outer packaging provided they will not interact dangerously in the event of leakage. The Packing Group assigned will be II or III, according to the classification criteria for Class 3, applied to the base material. Additionally, unless otherwise excepted in this subchapter, polyester resin kits must be packaged in specification combination packagings based on the performance level of the base material contained within the kit.

41This material at the Packing Group II hazard criteria level may be transported in Large Packagings.

43The membrane filters, including paper separators and coating or backing materials, that are present in transport, must not be able to propagate a detonation as tested by one of the tests described in the UN Manual of Tests and Criteria, Part I, Test series 1(a) (IBR, see ? 171.7 of this subchapter). On the basis of the results of suitable burning rate tests, and taking into account the standard tests in the UN Manual of Tests and Criteria, Part III, subsection 33.2.1 (IBR, see ? 171.7 of this subchapter), nitrocellulose membrane filters in the form in which they are to be transported that do not meet the criteria for a Division 4.1 material are not subject to the requirements of this subchapter. Packagings must be so constructed that explosion is not possible by reason of increased internal pressure. Nitrocellulose membrane filters covered by this entry, each with a mass not exceeding 0.5 g, are not subject to the requirements of this subchapter when contained individually in an article or a sealed packet.

44The formulation must be prepared so that it remains homogenous and does not separate during transport. Formulations with low nitrocellulose contents and neither showing dangerous properties when tested for their ability to detonate, deflagrate or explode when heated under defined confinement by the appropriate test methods and criteria in the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter), nor classed as a Division 4.1 (flammable solid) when tested in accordance with the procedures specified in ? 173.124 of this subchapter (chips, if necessary, crushed and sieved to a particle size of less than 1.25 mm), are not subject to the requirements of this subchapter.

45Temperature should be maintained between 18 ?C (64.4 ?F) and 40 ?C (104 ?F). Tanks containing solidified methacrylic acid must not be reheated during transport.

46This material must be packed in accordance with packing method OP6 (see ? 173.225 of this subchapter). During transport, it must be protected from direct sunshine and stored (or kept) in a cool and well-ventilated place, away from all sources of heat.

47Mixtures of solids that are not subject to this subchapter and flammable liquids may be transported under this entry without first applying the classification criteria of Division 4.1, provided there is no free liquid visible at the time the material is loaded or at the time the packaging or transport unit is closed. Except when the liquids are fully absorbed in solid material contained in sealed bags, for single packagings, each packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II level. Small inner packagings consisting of sealed packets and articles containing less than 10 mL of a Class 3 liquid in Packing Group II or III absorbed onto a solid material are not subject to this subchapter provided there is no free liquid in the packet or article.

48Mixtures of solids that are not subject to this subchapter and toxic liquids may be transported under this entry without first applying the classification criteria of Division 6.1, provided there is no free liquid visible at the time the material is loaded or at the time the packaging or transport unit is closed. For single packagings, each packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II level. This entry may not be used for solids containing a Packing Group I liquid.

49Mixtures of solids that are not subject to this subchapter and corrosive liquids may be transported under this entry without first applying the classification criteria of Class 8, provided there is no free liquid visible at the time the material is loaded or at the time the packaging or transport unit is closed. For single packagings, each packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II level.

50Cases, cartridge, empty with primer which are made of metallic or plastic casings and meeting the classification criteria of Division 1.4 are not regulated for domestic transportation.51This description applies to items previously described as ?Toy propellant devices, Class C? and includes reloadable kits. Model rocket motors containing 30 grams or less propellant are classed as Division 1.4S and items containing more than 30 grams of propellant but not more than 62.5 grams of propellant are classed as Division 1.4C.

52This entry may only be used for substances that do not exhibit explosive properties of Class 1 (explosive) when tested in accordance with Test Series 1 and 2 of Class 1 (explosive) in the UN Manual of Tests and Criteria, Part I (incorporated by reference; see ? 171.7 of this subchapter).

53Packages of these materials must bear the subsidiary risk label, ?EXPLOSIVE?, and the subsidiary hazard class/division must be entered in parentheses immediately following the primary hazard class in the shipping description, unless otherwise provided in this subchapter or through an approval issued by the Associate Administrator, or the competent authority of the country of origin. A copy of the approval shall accompany the shipping papers.

54Maneb or maneb preparations not meeting the definition of Division 4.3 or any other hazard class are not subject to the requirements of this subchapter when transported by motor vehicle, rail car, or aircraft.

55This device must be approved in accordance with ? 173.56 of this subchapter by the Associate Administrator.

56A means to interrupt and prevent detonation of the detonator from initiating the detonating cord must be installed between each electric detonator and the detonating cord ends of the jet perforating guns before the charged jet perforating guns are offered for transportation.

57Maneb or Maneb preparations stabilized against self-heating need not be classified in Division 4.2 when it can be demonstrated by testing that a volume of 1 m3 of substance does not self-ignite and that the temperature at the center of the sample does not exceed 200 ?C, when the sample is maintained at a temperature of not less than 75 ?C ?2 ?C for a period of 24 hours, in accordance with procedures set forth for testing self-heating materials in the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter).

58Aqueous solutions of Division 5.1 inorganic solid nitrate substances are considered as not meeting the criteria of Division 5.1 if the concentration of the substances in solution at the minimum temperature encountered in transport is not greater than 80% of the saturation limit.

59Ferrocerium, stabilized against corrosion, with a minimum iron content of 10 percent is not subject to the requirements of this subchapter.

61A chemical oxygen generator is spent if its means of ignition and all or a part of its chemical contents have been expended.

62Oxygen generators (see ? 171.8 of this subchapter) are not authorized for transportation under this entry.

64The group of alkali metals includes lithium, sodium, potassium, rubidium, and caesium.

65The group of alkaline earth metals includes magnesium, calcium, strontium, and barium.

66Formulations of these substances containing not less than 30 percent non-volatile, non-flammable phlegmatizer are not subject to this subchapter.

70Black powder that has been classed in accordance with the requirements of ? 173.56 of this subchapter may be reclassed and offered for domestic transportation as a Division 4.1 material if it is offered for transportation and transported in accordance with the limitations and packaging requirements of ? 173.170 of this subchapter.

74During transport, this material must be protected from direct sunshine and stored or kept in a cool and well-ventilated place, away from all sources of heat.

78This entry may not be used to describe compressed air which contains more than 23.5 percent oxygen. Compressed air containing greater than 23.5 percent oxygen must be shipped using the description ?Compressed gas, oxidizing, n.o.s., UN3156.?

79This entry may not be used for mixtures that meet the definition for oxidizing gas.

81Polychlorinated biphenyl items, as defined in 40 CFR 761.3, for which specification packagings are impractical, may be packaged in non-specification packagings meeting the general packaging requirements of subparts A and B of part 173 of this subchapter. Alternatively, the item itself may be used as a packaging if it meets the general packaging requirements of subparts A and B of part 173 of this subchapter.

101The name of the particular substance or article must be specified.

102The ends of the detonating cord must be tied fast so that the explosive cannot escape. The articles may be transported as in Division 1.4 Compatibility Group D (1.4D) if all of the conditions specified in ? 173.63(a) of this subchapter are met.

103Detonators which will not mass detonate and undergo only limited propagation in the shipping package may be assigned to 1.4B classification code. Mass detonate means that more than 90 percent of the devices tested in a package explode practically simultaneously. Limited propagation means that if one detonator near the center of a shipping package is exploded, the aggregate weight of explosives, excluding ignition and delay charges, in this and all additional detonators in the outside packaging that explode may not exceed 25 grams.105The word ?Agents? may be used instead of ?Explosives? when approved by the Associate Administrator.

106The recognized name of the particular explosive may be specified in addition to the type.

107The classification of the substance is expected to vary especially with the particle size and packaging but the border lines have not been experimentally determined; appropriate classifications should be verified following the test procedures in ?? 173.57 and 173.58 of this subchapter.

108Fireworks must be so constructed and packaged that loose pyrotechnic composition will not be present in packages during transportation.

109Rocket motors must be nonpropulsive in transportation unless approved in accordance with ? 173.56 of this subchapter. A rocket motor to be considered ?nonpropulsive? must be capable of unrestrained burning and must not appreciably move in any direction when ignited by any means.

110Fire extinguishers transported under UN1044 and oxygen cylinders transported for emergency use under UN1072 may include installed actuating cartridges (cartridges, power device of Division 1.4C or 1.4S), without changing the classification of Division 2.2, provided the aggregate quantity of deflagrating (propellant) explosives does not exceed 3.2 grams per cylinder. Oxygen cylinders with installed actuating cartridges as prepared for transportation must have an effective means of preventing inadvertent activation.

111Explosive substances of Division 1.1 Compatibility Group A (1.1A) are forbidden for transportation if dry or not desensitized, unless incorporated in a device.

113The sample must be given a tentative approval by an agency or laboratory in accordance with ? 173.56 of this subchapter.

114Jet perforating guns, charged, oil well, without detonator may be reclassed to Division 1.4 Compatibility Group D (1.4D) if the following conditions are met:

a. The total weight of the explosive contents of the shaped charges assembled in the guns does not exceed 90.5 kg (200 pounds) per vehicle; and

b. The guns are packaged in accordance with Packing Method US 1 as specified in ? 173.62 of this subchapter.

115Boosters with detonator, detonator assemblies and boosters with detonators in which the total explosive charge per unit does not exceed 25 g, and which will not mass detonate and undergo only limited propagation in the shipping package may be assigned to 1.4B classification code. Mass detonate means more than 90 percent of the devices tested in a package explode practically simultaneously. Limited propagation means that if one booster near the center of the package is exploded, the aggregate weight of explosives, excluding ignition and delay charges, in this and all additional boosters in the outside packaging that explode may not exceed 25 g.

116Fuzes, detonating may be classed in Division 1.4 if the fuzes do not contain more than 25 g of explosive per fuze and are made and packaged so that they will not cause functioning of other fuzes, explosives or other explosive devices if one of the fuzes detonates in a shipping packaging or in adjacent packages.

117If shipment of the explosive substance is to take place at a time that freezing weather is anticipated, the water contained in the explosive substance must be mixed with denatured alcohol so that freezing will not occur.

118This substance may not be transported under the provisions of Division 4.1 unless specifically authorized by the Associate Administrator (see UN0143 or UN0150 as appropriate).

119This substance, when in quantities of not more than 11.5 kg (25.3 pounds), with not less than 10 percent water, by mass, also may be classed as Division 4.1, provided a negative test result is obtained when tested in accordance with test series 6(c) of the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter).

120The phlegmatized substance must be significantly less sensitive than dry PETN.

121This substance, when containing less alcohol, water or phlegmatizer than specified, may not be transported unless approved by the Associate Administrator.

123Any explosives, blasting, type C containing chlorates must be segregated from explosives containing ammonium nitrate or other ammonium salts.

125Lactose or glucose or similar materials may be used as a phlegmatizer provided that the substance contains not less than 90%, by mass, of phlegmatizer. These mixtures may be classified in Division 4.1 when tested in accordance with test series 6(c) of the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter) and approved by the Associate Administrator. Testing must be conducted on at least three packages as prepared for transport. Mixtures containing at least 98%, by mass, of phlegmatizer are not subject to the requirements of this subchapter. Packages containing mixtures with not less than 90% by mass, of phlegmatizer need not bear a POISON subsidiary risk label.

127Mixtures containing oxidizing and organic materials transported under this entry may not meet the definition and criteria of a Class 1 material. (See ? 173.50 of this subchapter.)128Regardless of the provisions of ? 172.101(c)(12), aluminum smelting by-products and aluminum remelting by-products described under this entry, meeting the definition of Class 8, Packing Group II and III may be classed as a Division 4.3 material and transported under this entry. The presence of a Class 8 hazard must be communicated as required by this Part for subsidiary hazards.

129These materials may not be classified and transported unless authorized by the Associate Administrator on the basis of results from Series 2 Test and a Series 6(c) Test from the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter) on packages as prepared for transport. The packing group assignment and packaging must be approved by the Associate Administrator for Hazardous Materials Safety on the basis of the criteria in ? 173.21 of this subchapter and the package type used for the Series 6(c) test.130?Batteries, dry, sealed, n.o.s.,? commonly referred to as dry batteries, are hermetically sealed and generally utilize metals (other than lead) and/or carbon as electrodes. These batteries are typically used for portable power applications. The rechargeable (and some non-rechargeable) types have gelled alkaline electrolytes (rather than acidic) making it difficult for them to generate hydrogen or oxygen when overcharged and therefore, differentiating them from non-spillable batteries. Dry batteries specifically covered by another entry in the ? 172.101 Table must be transported in accordance with the requirements applicable to that entry. For example, nickel-metal hydride batteries transported by vessel in certain quantities are covered by another entry (see Batteries, nickel-metal hydride, UN3496). Dry batteries not specifically covered by another entry in the ? 172.101 Table are covered by this entry (i.e., Batteries, dry, sealed, n.o.s.) and are not subject to requirements of this subchapter except for the following:

(a) Incident reporting. For transportation by aircraft, a telephone report in accordance with ? 171.15(a) is required if a fire, violent rupture, explosion or dangerous evolution of heat (i.e., an amount of heat sufficient to be dangerous to packaging or personal safety to include charring of packaging, melting of packaging, scorching of packaging, or other evidence) occurs as a direct result of a dry battery. For all modes of transportation, a written report submitted, retained, and updated in accordance with ? 171.16 is required if a fire, violent rupture, explosion or dangerous evolution of heat occurs as a direct result of a dry battery or battery-powered device.

(b) Preparation for transport. Batteries and battery-powered device(s) containing batteries must be prepared and packaged for transport in a manner to prevent:

(1) A dangerous evolution of heat;

(2) Short circuits, including but not limited to the following methods:

(i) Packaging each battery or each battery-powered device when practicable, in fully enclosed inner packagings made of non-conductive material;

(ii) Separating or packaging batteries in a manner to prevent contact with other batteries, devices or conductive materials (e.g., metal) in the packagings; or

(iii) Ensuring exposed terminals or connectors are protected with non-conductive caps, non-conductive tape, or by other appropriate means; and

(3) Damage to terminals. If not impact resistant, the outer packaging should not be used as the sole means of protecting the battery terminals from damage or short circuiting. Batteries must be securely cushioned and packed to prevent shifting which could loosen terminal caps or reorient the terminals to produce short circuits. Batteries contained in devices must be securely installed. Terminal protection methods include but are not limited to the following:

(i) Securely attaching covers of sufficient strength to protect the terminals;

(ii) Packaging the battery in a rigid plastic packaging; or

(iii) Constructing the battery with terminals that are recessed or otherwise protected so that the terminals will not be subjected to damage if the package is dropped.

(c) Additional air transport requirements. For a battery whose voltage (electrical potential) exceeds 9 volts?

(1) When contained in a device, the device must be packaged in a manner that prevents unintentional activation or must have an independent means of preventing unintentional activation (e.g., packaging restricts access to activation switch, switch caps or locks, recessed switches, trigger locks, temperature sensitive circuit breakers, etc.); and

(2) An indication of compliance with this special provision must be provided by marking each package with the words ?not restricted? or by including the words ?not restricted? on a transport document such as an air waybill accompanying the shipment.

(d) Used or spent battery exception. Used or spent dry batteries of both non-rechargeable and rechargeable designs, with a marked rating up to 9-volt that are combined in the same package and transported by highway or rail for recycling, reconditioning, or disposal are not subject to this special provision or any other requirement of the HMR. Note that batteries utilizing different chemistries (i.e., those battery chemistries specifically covered by another entry in the ? 172.101 Table) as well as dry batteries with a marked rating greater than 9-volt may not be combined with used or spent batteries in the same package. Note also that this exception does not apply to batteries that have been reconditioned for reuse.

131This material may not be offered for transportation unless approved by the Associate Administrator.

132This entry may only be used for uniform, ammonium nitrate based fertilizer mixtures, containing nitrogen, phosphate or potash, meeting the following criteria: (1) Contains not more than 70% ammonium nitrate and not more than 0.4% total combustible, organic material calculated as carbon or (2) Contains not more than 45% ammonium nitrate and unrestricted combustible material.

134This entry only applies to vehicles powered by wet batteries, sodium batteries, or lithium batteries and equipment powered by wet batteries or sodium batteries that are transported with these batteries installed. For the purpose of this special provision, vehicles are self-propelled apparatus designed to carry one or more persons or goods. Examples of such vehicles are electrically-powered cars, motorcycles, scooters, three- and four-wheeled vehicles or motorcycles, battery-assisted bicycles, lawn tractors, boats, aircraft, wheelchairs and other mobility aids. Examples of equipment are lawnmowers, cleaning machines or model boats and model aircraft. Equipment powered by lithium batteries must be consigned under the entries ?Lithium batteries contained in equipment? or ?Lithium batteries packed with equipment,? as appropriate. Self-propelled vehicles that also contain an internal combustion engine must be consigned under the entry ?Engine, internal combustion, flammable gas powered? or ?Engine, internal combustion, flammable liquid powered? or ?Vehicle, flammable gas powered? or ?Vehicle, flammable liquid powered,? as appropriate. These entries include hybrid electric vehicles powered by both an internal combustion engine and batteries. Additionally, self-propelled vehicles or equipment that contain a fuel cell engine must be consigned under the entries ?Engine, fuel cell, flammable gas powered? or ?Engine, fuel cell, flammable liquid powered? or ?Vehicle, fuel cell, flammable gas powered? or ?Vehicle, fuel cell, flammable liquid powered,? as appropriate. These entries include hybrid electric vehicles powered by a fuel cell engine, an internal combustion engine, and batteries.

135Internal combustion engines installed in a vehicle must be consigned under the entries ?Vehicle, flammable gas powered? or ?Vehicle, flammable liquid powered,? as appropriate. These entries include hybrid electric vehicles powered by both an internal combustion engine and wet, sodium or lithium batteries installed. If a fuel cell engine is installed in a vehicle, the vehicle must be consigned using the entries ?Vehicle, fuel cell, flammable gas powered? or ?Vehicle, fuel cell, flammable liquid powered,? as appropriate. These entries include hybrid electric vehicles powered by a fuel cell, an internal combustion engine, and wet, sodium or lithium batteries installed.

136This entry only applies to machinery and apparatus containing hazardous materials as in integral element of the machinery or apparatus. It may not be used to describe machinery or apparatus for which a proper shipping name exists in the ? 172.101 Table. Except when approved by the Associate Administrator, machinery or apparatus may only contain hazardous materials for which exceptions are referenced in Column (8) of the ? 172.101 Table and are provided in part 173, subpart D, of this subchapter. Hazardous materials shipped under this entry are excepted from the labeling requirements of this subchapter unless offered for transportation or transported by aircraft and are not subject to the placarding requirements of part 172, subpart F, of this subchapter. Orientation markings as described in ? 172.312 (a)(2) are required when liquid hazardous materials may escape due to incorrect orientation. The machinery or apparatus, if unpackaged, or the packaging in which it is contained shall be marked ?Dangerous goods in machinery? or ?Dangerous goods in apparatus?, as appropriate, with the identification number UN3363. For transportation by aircraft, machinery or apparatus may not contain any material forbidden for transportation by passenger or cargo aircraft. The Associate Administrator may except from the requirements of this subchapter, equipment, machinery and apparatus provided:

a. It is shown that it does not pose a significant risk in transportation;

b. The quantities of hazardous materials do not exceed those specified in ? 173.4a of this subchapter; and

c. The equipment, machinery or apparatus conforms with ? 173.222 of this subchapter.

137Cotton, dry; flax, dry; sisal, dry; and tampico fiber, dry are not subject to the requirements of this subchapter when they are baled in accordance with ISO 8115, ?Cotton Bales?Dimensions and Density? (IBR, see ? 171.7 of this subchapter) to a density of not less than 360 kg/m3 (22.1 lb/ft3) for cotton, 400 kg/m3 (24.97 lb/ft3) for flax, 620 kg/m3 (38.71 lb/ft3) for sisal and 360 kg/m3 (22.1 lb/ft3) for tampico fiber and transported in a freight container or closed transport vehicle.138This entry applies to lead compounds which, when mixed in a ratio of 1:1,000 with 0.07 M (Molar concentration) hydrochloric acid and stirred for one hour at a temperature of 23 ?C ?2 ?C, exhibit a solubility of more than 5%. Lead compounds which, when mixed in a ratio of 1:1,000 with 0.07 M (Molar concentration) hydrochloric acid and stirred for one hour at a temperature of 23 ?C ?2 ?C, exhibit a solubility of 5% or less are not subject to the requirements of this subchapter unless they meet criteria as another hazard class or division. Lead compounds that have a solubility of 5% or less in accordance with this special provision are not subject to the requirements of this subchapter that pertain to Marine Pollutants.

139Use of the ?special arrangement? proper shipping names for international shipments must be made under an IAEA Certificate of Competent Authority issued by the Associate Administrator in accordance with the requirements in ? 173.471, ? 173.472, or ? 173.473 of this subchapter. Use of these proper shipping names for domestic shipments may be made only under a DOT special permit, as defined in, and in accordance with the requirements of subpart B of part 107 of this subchapter.

140This material is regulated only when it meets the defining criteria for a hazardous substance or a marine pollutant. In addition, the column 5 reference is modified to read ?III? on those occasions when this material is offered for transportation or transported by highway or rail.

141A toxin obtained from a plant, animal, or bacterial source containing an infectious substance, or a toxin contained in an infectious substance, must be classed as Division 6.2, described as an infectious substance, and assigned to UN 2814 or UN 2900, as appropriate.

142These hazardous materials may not be classified and transported unless authorized by the Associate Administrator. The Associate Administrator will base the authorization on results from Series 2 tests and a Series 6(c) test from the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter) on packages as prepared for transport in accordance with the requirements of this subchapter.

144If transported as a residue in an underground storage tank (UST), as defined in 40 CFR 280.12, that has been cleaned and purged or rendered inert according to the American Petroleum Institute (API) Standard 1604 (IBR, see ? 171.7 of this subchapter), then the tank and this material are not subject to any other requirements of this subchapter. However, sediments remaining in the tank that meet the definition for a hazardous material are subject to the applicable regulations of this subchapter.

145This entry applies to formulations that neither detonate in the cavitated state nor deflagrate in laboratory testing, show no effect when heated under confinement, exhibit no explosive power, and are thermally stable (self-accelerating decomposition temperature (SADT) at 60 ?C (140 ?F) or higher for a 50 kg (110.2 lbs.) package). Formulations not meeting these criteria must be transported under the provisions applicable to the appropriate entry in the Organic Peroxide Table in ? 173.225 of this subchapter.

146This description may be used for a material that poses a hazard to the environment but does not meet the definition for a hazardous waste or a hazardous substance, as defined in ? 171.8 of this subchapter, or any hazard class, as defined in part 173 of this subchapter, if it is designated as environmentally hazardous by another Competent Authority. This provision may be used for both domestic and international shipments.

147This entry applies to non-sensitized emulsions, suspensions, and gels consisting primarily of a mixture of ammonium nitrate and fuel, intended to produce a Type E blasting explosive only after further processing prior to use. The mixture for emulsions typically has the following composition: 60-85% ammonium nitrate; 5-30% water; 2-8% fuel; 0.5-4% emulsifier or thickening agent; 0-10% soluble flame suppressants; and trace additives. Other inorganic nitrate salts may replace part of the ammonium nitrate. The mixture for suspensions and gels typically has the following composition: 60-85% ammonium nitrate; 0-5% sodium or potassium perchlorate; 0-17% hexamine nitrate or monomethylamine nitrate; 5-30% water; 2-15% fuel; 0.5-4% thickening agent; 0-10% soluble flame suppressants; and trace additives. Other inorganic nitrate salts may replace part of the ammonium nitrate. These substances must satisfactorily pass Test Series 8 of the UN Manual of Tests and Criteria, Part I, Section 18 (IBR, see ? 171.7 of this subchapter), and may not be classified and transported unless approved by the Associate Administrator.

149When transported as a limited quantity or a consumer commodity, the maximum net capacity specified in ? 173.150(b)(2) of this subchapter for inner packagings may be increased to 5 L (1.3 gallons).

150This description may be used only for uniform mixtures of fertilizers containing ammonium nitrate as the main ingredient within the following composition limits:

a. Not less than 90% ammonium nitrate with not more than 0.2% total combustible, organic material calculated as carbon, and with added matter, if any, that is inorganic and inert when in contact with ammonium nitrate; or

b. Less than 90% but more than 70% ammonium nitrate with other inorganic materials, or more than 80% but less than 90% ammonium nitrate mixed with calcium carbonate and/or dolomite and/or mineral calcium sulphate, and not more than 0.4% total combustible, organic material calculated as carbon; or

c. Ammonium nitrate-based fertilizers containing mixtures of ammonium nitrate and ammonium sulphate with more than 45% but less than 70% ammonium nitrate, and not more than 0.4% total combustible, organic material calculated as carbon such that the sum of the percentage of compositions of ammonium nitrate and ammonium sulphate exceeds 70%.

151If this material meets the definition of a flammable liquid in ? 173.120 of this subchapter, a FLAMMABLE LIQUID label is also required and the basic description on the shipping paper must indicate the Class 3 subsidiary hazard.

155Fish meal, fish scrap and krill meal may not be transported if the temperature at the time of loading either exceeds 35 ?C (95 ?F), or exceeds 5 ?C (41 ?F) above the ambient temperature, whichever is higher.

156Asbestos that is immersed or fixed in a natural or artificial binder material, such as cement, plastic, asphalt, resins or mineral ore, or contained in manufactured products is not subject to the requirements of this subchapter.

159This material must be protected from direct sunshine and kept in a cool, well-ventilated place away from sources of heat.

160This entry applies to articles that are used as life-saving vehicle air bag inflators, air bag modules or seat-belt pretensioners containing Class 1 (explosive) materials or materials of other hazard classes. Air bag inflators and modules must be tested in accordance with Test series 6(c) of Part I of the UN Manual of Tests and Criteria (incorporated by reference; see ? 171.7 of this subchapter), with no explosion of the device, no fragmentation of device casing or pressure vessel, and no projection hazard or thermal effect that would significantly hinder fire-fighting or other emergency response efforts in the immediate vicinity. If the air bag inflator unit satisfactorily passes the series 6(c) test, it is not necessary to repeat the test on the air bag module.161 For domestic transport, air bag inflators, air bag modules or seat-belt pretensioners that meet the criteria for a Division 1.4G explosive must be transported using the description, ?Articles, pyrotechnic for technical purposes,? UN0431. See ? 173.166(d)(1) of this subchapter for an exception regarding air bag inflators, air bag modules, or seat-belt pretensioners that are installed in a motor vehicle, aircraft, boat or other transport conveyance or its completed components, such as steering columns or door panels.

162This material may be transported under the provisions of Division 4.1 only if it is packed so that at no time during transport will the percentage of diluent fall below the percentage that is stated in the shipping description.

163Substances must satisfactorily pass Test Series 8 of the UN Manual of Tests and Criteria, Part I, Section 18 (IBR, see ? 171.7 of this subchapter).

164Substances must not be transported under this entry unless approved by the Associate Administrator on the basis of the results of appropriate tests according to Part I of the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter). The material must be packaged so that the percentage of diluent does not fall below that stated in the approval at any time during transportation.

165These substances are susceptible to exothermic decomposition at elevated temperatures. Decomposition can be initiated by heat, moisture or by impurities (e.g., powdered metals (iron, manganese, cobalt, magnesium)). During the course of transportation, these substances must be shaded from direct sunlight and all sources of heat and be placed in adequately ventilated areas.

166When transported in non-friable tablet form, calcium hypochlorite, dry, may be transported as a Packing Group III material.

167These storage systems must always be considered as containing hydrogen. A metal hydride storage system installed in or intended to be installed in a vehicle or equipment or in vehicle or equipment components must be approved for transport by the Associate Administrator. A copy of the approval must accompany each shipment.

168For lighters containing a Division 2.1 gas (see ? 171.8 of this subchapter), representative samples of each new lighter design must be examined and successfully tested as specified in ? 173.308(b)(3). For criteria in determining what is a new lighter design, see ? 173.308(b)(1). For transportation of new lighter design samples for examination and testing, see ? 173.308(b)(2). The examination and testing of each lighter design must be performed by a person authorized by the Associate Administrator under the provisions of subpart E of part 107 of this chapter, as specified in ? 173.308(a)(4). For continued use of approvals dated prior to January 1, 2012, see ? 173.308(b)(5).For non-pressurized lighters containing a Class 3 (flammable liquid) material, its design, description, and packaging must be approved by the Associate Administrator prior to being offered for transportation or transported in commerce. In addition, a lighter design intended to contain a non-pressurized Class 3 material is excepted from the examination and testing criteria specified in ? 173.308(b)(3). An unused lighter or a lighter that is cleaned of residue and purged of vapors is not subject to the requirements of this subchapter.

169This entry applies to lighter refills (see ? 171.8 of this subchapter) that contain a Division 2.1 (flammable) gas but do not contain an ignition device. Lighter refills offered for transportation under this entry may not exceed 4 fluid ounces capacity (7.22 cubic inches) or contain more than 65 grams of fuel. A lighter refill exceeding 4 fluid ounces capacity (7.22 cubic inches) or containing more than 65 grams of fuel must be classed as a Division 2.1 material, described with the proper shipping name appropriate for the material, and packaged in the packaging specified in part 173 of this subchapter for the flammable gas contained therein. In addition, a container exceeding 4 fluid ounces volumetric capacity (7.22 cubic inches) or containing more than 65 grams of fuel may not be connected or manifolded to a lighter or similar device and must also be described and packaged according to the fuel contained therein. For transportation by passenger-carrying aircraft, the net mass of lighter refills may not exceed 1 kg per package, and, for cargo-only aircraft, the net mass of lighter refills may not exceed 15 kg per package. See ? 173.306(h) of this subchapter.

170Air must be eliminated from the vapor space by nitrogen or other means.

171This entry may only be used when the material is transported in non-friable tablet form or for granular or powered mixtures that have been shown to meet the PG III criteria in ? 173.127.

172This entry includes alcohol mixtures containing up to 5% petroleum products.

173For adhesives, printing inks, printing ink-related materials, paints, paint-related materials, and resin solutions which are assigned to UN3082, and do not meet the definition of another hazard class, metal or plastic packaging for substances of packing groups II and III in quantities of 5 L (1.3 gallons) or less per packaging are not required to meet the UN performance package testing when transported:a. Except for transportation by aircraft, in palletized loads, a pallet box or unit load device (e.g. individual packaging placed or stacked and secured by strapping, shrink or stretch-wrapping or other suitable means to a pallet). For vessel transport, the palletized loads, pallet boxes or unit load devices must be firmly packed and secured in closed cargo transport units; or

b. Except for transportation by aircraft, as an inner packaging of a combination packaging with a maximum net mass of 40 kg (88 pounds). For transportation by aircraft, as an inner packaging of a combination packaging with a maximum gross mass of 30 kg when packaged as a limited quantity in accordance with ? 173.27(f).

175This substance must be stabilized when in concentrations of not more than 99%.

176This entry must be used for formaldehyde solutions containing methanol as a stabilizer. Formaldehyde solutions not containing methanol and not meeting the Class 3 flammable liquid criteria must be described using a different proper shipping name.177Gasoline, or, ethanol and gasoline mixtures, for use in internal combustion engines (e.g., in automobiles, stationary engines and other engines) must be assigned to Packing Group II regardless of variations in volatility.

188Small lithium cells and batteries. Lithium cells or batteries, including cells or batteries packed with or contained in equipment, are not subject to any other requirements of this subchapter if they meet all of the following:

a. Primary lithium batteries and cells.

(1) Primary lithium batteries and cells are forbidden for transport aboard passenger-carrying aircraft. The outside of each package that contains primary (nonrechargeable) lithium batteries or cells must be marked ?PRIMARY LITHIUM BATTERIES?FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT? or ?LITHIUM METAL BATTERIES?FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT? on a background of contrasting color. The letters in the marking must be:

(i) At least 12 mm (0.5 inch) in height on packages having a gross weight of more than 30 kg (66 pounds); or

(ii) At least 6 mm (0.25 inch) on packages having a gross weight of 30 kg (66 pounds) or less, except that smaller font may be used as necessary to fit package dimensions; and

(2) The provisions of paragraph (a)(1) do not apply to packages that contain 5 kg (11 pounds) net weight or less of primary lithium batteries or cells that are contained in or packed with equipment and the package contains no more than the number of lithium batteries or cells necessary to power the piece of equipment;

b. For a lithium metal or lithium alloy cell, the lithium content is not more than 1.0 g. For a lithium-ion cell, the equivalent lithium content is not more than 1.5 g;

c. For a lithium metal or lithium alloy battery, the aggregate lithium content is not more than 2.0 g. For a lithium-ion battery, the aggregate equivalent lithium content is not more than 8 g;

d. Effective October 1, 2009, the cell or battery must be of a type proven to meet the requirements of each test in the UN Manual of Tests and Criteria (IBR; see ? 171.7 of this subchapter);

e. Cells or batteries are separated or packaged in a manner to prevent short circuits and are packed in a strong outer packaging or are contained in equipment;

f. Effective October 1, 2008, except when contained in equipment, each package containing more than 24 lithium cells or 12 lithium batteries must be:

(1) Marked to indicate that it contains lithium batteries, and special procedures should be followed if the package is damaged;

(2) Accompanied by a document indicating that the package contains lithium batteries and special procedures should be followed if the package is damaged;

(3) Capable of withstanding a 1.2 meter drop test in any orientation without damage to cells or batteries contained in the package, without shifting of the contents that would allow short circuiting and without release of package contents; and

(4) Gross weight of the package may not exceed 30 kg (66 pounds). This requirement does not apply to lithium cells or batteries packed with equipment;

g. Electrical devices must conform to ? 173.21;

h. For transportation by aircraft, a telephone report in accordance with ? 171.15(a) is required if a fire, violent rupture, explosion or dangerous evolution of heat (i.e., an amount of heat sufficient to be dangerous to packaging or personal safety to include charring of packaging, melting of packaging, scorching of packaging, or other evidence) occurs as a direct result of a lithium battery. For all modes of transportation, a written report submitted, retained, and updated in accordance with ? 171.16 is required if a fire, violent rupture, explosion or dangerous evolution of heat occurs as a direct result of a lithium battery or battery-powered device; and

i. Lithium batteries or cells are not authorized aboard an aircraft in checked or carry-on luggage except as provided in ? 175.10.

189Medium lithium cells and batteries. Effective October 1, 2008, when transported by motor vehicle or rail car, lithium cells or batteries, including cells or batteries packed with or contained in equipment, are not subject to any other requirements of this subchapter if they meet all of the following:

a. The lithium content anode of each cell, when fully charged, is not more than 5 grams.

b. The aggregate lithium content of the anode of each battery, when fully charged, is not more than 25 grams.

c. The cells or batteries are of a type proven to meet the requirements of each test in the UN Manual of Tests and Criteria (IBR; see ? 171.7 of this subchapter). A cell or battery and equipment containing a cell or battery that was first transported prior to January 1, 2006 and is of a type proven to meet the criteria of Class 9 by testing in accordance with the tests in the UN Manual of Tests and Criteria, Third revised edition, 1999, need not be retested.

d. Cells or batteries are separated or packaged in a manner to prevent short circuits and are packed in a strong outer packaging or are contained in equipment.

e. The outside of each package must be marked ?LITHIUM BATTERIES?FORBIDDEN FOR TRANSPORT ABOARD AIRCRAFT AND VESSEL? on a background of contrasting color, in letters:

(1) At least 12 mm (0.5 inch) in height on packages having a gross weight of more than 30 kg (66 pounds); or

(2) At least 6 mm (0.25 inch) on packages having a gross weight of 30 kg (66 pounds) or less, except that smaller font may be used as necessary to fit package dimensions.

f. Except when contained in equipment, each package containing more than 24 lithium cells or 12 lithium batteries must be:

(1) Marked to indicate that it contains lithium batteries, and special procedures should be followed if the package is damaged;

(2) Accompanied by a document indicating that the package contains lithium batteries and special procedures should be followed if the package is damaged;

(3) Capable of withstanding a 1.2 meter drop test in any orientation without damage to cells or batteries contained in the package, without shifting of the contents that would allow short circuiting and without release of package contents; and

(4) Gross weight of the package may not exceed 30 kg (66 pounds). This requirement does not apply to lithium cells or batteries packed with equipment.

g. Electrical devices must conform to ? 173.21 of this subchapter; and

h. A written report submitted, retained, and updated in accordance with ? 171.16 is required if a fire, violent rupture, explosion or dangerous evolution of heat (i.e., an amount of heat sufficient to be dangerous to packaging or personal safety to include charring of packaging, melting of packaging, scorching of packaging, or other evidence) occurs as a direct result of a lithium battery or battery-powered device.

190Until the effective date of the standards set forth in Special Provision 189, medium lithium cells or batteries, including cells or batteries packed with or contained in equipment, are not subject to any other requirements of this subchapter if they meet all of the following:

a. Primary lithium batteries and cells. (1) Primary lithium batteries and cells are forbidden for transport aboard passenger-carrying aircraft. The outside of each package that contains primary (nonrechargeable) lithium batteries or cells must be marked ?PRIMARY LITHIUM BATTERIES?FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT? or ?LITHIUM METAL BATTERIES?FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT? on a background of contrasting color. The letters in the marking must be:

(i) At least 12 mm (0.5 inch) in height on packages having a gross weight of more than 30 kg (66 pounds); or

(ii) At least 6 mm (0.25 inch) on packages having a gross weight of 30 kg (66 pounds) or less, except that smaller font may be used as necessary to fit package dimensions; and

(2) The provisions of paragraph (a)(1) do not apply to packages that contain 5 kg (11 pounds) net weight or less of primary lithium batteries or cells that are contained in or packed with equipment and the package contains no more than the number of lithium batteries or cells necessary to power the piece of equipment.

b. The lithium content of each cell, when fully charged, is not more than 5 grams.

c. The aggregate lithium content of each battery, when fully charged, is not more than 25 grams.

d. The cells or batteries are of a type proven to meet the requirements of each test in the UN Manual of Tests and Criteria (IBR; see ? 171.7 of this subchapter). A cell or battery and equipment containing a cell or battery that was first transported prior to January 1, 2006 and is of a type proven to meet the criteria of Class 9 by testing in accordance with the tests in the UN Manual of Tests and Criteria, Third Revised Edition, 1999, need not be retested.

e. Cells or batteries are separated so as to prevent short circuits and are packed in a strong outer packaging or are contained in equipment.

f. Electrical devices must conform to ? 173.21 of this subchapter.

198Nitrocellulose solutions containing not more than 20% nitrocellulose may be transported as paint, perfumery products, or printing ink, as applicable, provided the nitrocellulose contains no more 12.6% nitrogen (by dry mass). See UN1210, UN1263, UN1266, UN3066, UN3469, and UN3470.

200Division 1.4G consumer fireworks may be certified for transportation by a DOT-approved Fireworks Certification Agency in accordance with the provisions of ? 173.65 of this subchapter.

222Shipments offered for transportation by aircraft may not be reclassed as ORM-D.

237?Batteries, dry, containing potassium hydroxide solid, electric storage? must be prepared and packaged in accordance with the requirements of ? 173.159(a) and (c). For transportation by aircraft, the provisions of ? 173.159(b)(2) apply. This entry may only be used for the transport of non-activated batteries that contain dry potassium hydroxide and that are intended to be activated prior to use by the addition of an appropriate amount of water to the individual cells.

238Neutron radiation detectors:

a. Neutron radiation detectors containing non-pressurized boron trifluoride gas in excess of 1 gram and radiation detection systems containing such neutron radiation detectors as components may be transported by highway, rail, vessel, or cargo aircraft in accordance with the following:

(1) The pressure in each neutron radiation detector must not exceed 105 kPa absolute at 20 ?C;

(2) The amount of gas must not exceed 12.8 grams per detector and the amount per outer packaging or per radiation detection system must not exceed 51.2 grams;

(3) Each neutron radiation detector must be of welded metal construction with brazed metal to ceramic feed through assemblies. They must have a minimum burst pressure of 1800 kPa; and

(4) Each neutron radiation detector must be packed in a sealed intermediate plastic liner with sufficient absorbent material to absorb the entire gas contents. Neutron radiation detectors must be packed in strong outer packagings that are capable of withstanding a 1.8 meter (6-foot) drop without leakage. Radiation detection systems containing neutron radiation detectors must also include absorbent material sufficient to absorb the entire gas contents of the neutron radiation detectors. Absorbent material must be surrounded by a liner or liners, as appropriate. They must be packed in strong outer packagings unless neutron radiation detectors are afforded equivalent protection by the radiation detection system.

b. Except for transportation by aircraft, neutron radiation detectors and radiation detection systems containing such detectors transported in accordance with paragraph (a) of this special provision are not subject to the labeling and placarding requirements of part 172 of this subchapter.

c. When transported by highway, rail, vessel, or as cargo on an aircraft, neutron radiation detectors containing not more than 1 gram of boron trifluoride, including those with solder glass joints, and radiation detection systems containing such detectors, where the neutron radiation detectors meet and are packed in accordance with the requirements of paragraph (a) of this special provision, are not subject to any other requirements of this subchapter.

328When lithium cells or batteries are contained in the fuel cell system, the item must be described under this entry and the entry ?Lithium batteries, contained in equipment?.

332Magnesium nitrate hexahydrate is not subject to the requirements of this subchapter.335Mixtures of solids that are not subject to this subchapter and environmentally hazardous liquids or solids may be classified as ?Environmentally hazardous substances, solid, n.o.s,? UN3077 and may be transported under this entry, provided there is no free liquid visible at the time the material is loaded or at the time the packaging or transport unit is closed. Each transport unit must be leakproof when used as bulk packaging.340This entry applies only to the vessel transportation of nickel-metal hydride batteries as cargo. Nickel-metal hydride button cells or nickel-metal hydride cells or batteries packed with or contained in battery-powered devices transported by vessel are not subject to the requirements of this special provision. See ?Batteries, dry, sealed, n.o.s.? in the ? 172.101 Hazardous Materials Table (HMT) of this part for transportation requirements for nickel-metal hydride batteries transported by other modes and for nickel-metal hydride button cells or nickel-metal hydride cells or batteries packed with or contained in battery-powered devices transported by vessel. Nickel-metal hydride batteries subject to this special provision are subject only to the following requirements: (1) The batteries must be prepared and packaged for transport in a manner to prevent a dangerous evolution of heat, short circuits, and damage to terminals; and are subject to the incident reporting in accordance with ? 171.16 of this subchapter if a fire, violent rupture, explosion or dangerous evolution of heat (i.e., an amount of heat sufficient to be dangerous to packaging or personal safety to include charring of packaging, melting of packaging, scorching of packaging, or other evidence) occurs as a direct result of a nickel metal hydride battery; and (2) when loaded in a cargo transport unit in a total quantity of 100 kg gross mass or more, the shipping paper requirements of Subpart C of this part, the manifest requirements of ? 176.30 of this subchapter, and the vessel stowage requirements assigned to this entry in Column (10) of the ? 172.101 Hazardous Materials Table.

342Glass inner packagings (such as ampoules or capsules) intended only for use in sterilization devices, when containing less than 30 mL of ethylene oxide per inner packaging with not more than 300 mL per outer packaging, may be transported in accordance with ? 173.4a of this subchapter, irrespective of the restriction of ? 173.4a(b) provided that:

a. After filling, each glass inner packaging must be determined to be leak-tight by placing the glass inner packaging in a hot water bath at a temperature and for a period of time sufficient to ensure that an internal pressure equal to the vapor pressure of ethylene oxide at 55 ?C is achieved. Any glass inner packaging showing evidence of leakage, distortion or other defect under this test must not be transported under the terms of this special provision;

b. In addition to the packaging required in ? 173.4a, each glass inner packaging must be placed in a sealed plastic bag compatible with ethylene oxide and capable of containing the contents in the event of breakage or leakage of the glass inner packaging; and

c. Each glass inner packaging is protected by a means of preventing puncture of the plastic bag (e.g., sleeves or cushioning) in the event of damage to the packaging (e.g., by crushing).

343A bulk packaging that emits hydrogen sulfide in sufficient concentration that vapors evolved from the crude oil can present an inhalation hazard must be marked as specified in ? 172.327of this part.

345?Nitrogen, refrigerated liquid (cryogenic liquid), UN1977? transported in open cryogenic receptacles with a maximum capacity of 1 L are not subject to the requirements of this subchapter. The receptacles must be constructed with glass double walls having the space between the walls vacuum insulated and each receptacle must be transported in an outer packaging with sufficient cushioning and absorbent materials to protect the receptacle from damage.

346?Nitrogen, refrigerated liquid (cryogenic liquid), UN1977? transported in accordance with the requirements for open cryogenic receptacles in ? 173.320 and this special provision are not subject to any other requirements of this subchapter. The receptacle must contain no hazardous materials other than the liquid nitrogen which must be fully absorbed in a porous material in the receptacle.347Effective July 1, 2011, for transportation by aircraft, this entry may only be used if the results of Test series 6(d) of Part I of the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter) have demonstrated that any hazardous effects from accidental functioning are confined to within the package. Effective January 1, 2012, for transportation by vessel, this entry may only be used if the results of Test Series 6(d) of Part I of the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter) have demonstrated that any hazardous effects from accidental functioning are confined to within the package. Effective January 1, 2014, for transportation domestically by highway or rail, this entry may only be used if the results of Test Series 6(d) of Part I of the UN Manual of Tests and Criteria (IBR, see ? 171.7 of this subchapter) have demonstrated that any hazardous effects from accidental functioning are confined to within the package. Testing must be performed or witnessed by a person who is approved by the Associate Administrator (see ? 173.56(b) of this subchapter). All successfully conducted tests or reassignment to another compatibility group require the issuance of a new or revised approval by the Associate Administrator prior to transportation on or after the dates specified for each authorized mode of transport in this special provision.

349Mixtures of hypochlorite with an ammonium salt are forbidden for transport. A hypochlorite solution, UN1791, is a Class 8 corrosive material.

350Ammonium bromate, ammonium bromate aqueous solutions, and mixtures of a bromate with an ammonium salt are forbidden for transport.

351Ammonium chlorate, ammonium chlorate aqueous solutions, and mixtures of a chlorate with an ammonium salt are forbidden for transport.

352Ammonium chlorite, ammonium chlorite aqueous solutions, and mixtures of a chlorite with an ammonium salt are forbidden for transport.

353Ammonium permanganate, ammonium permanganate aqueous solutions, and mixtures of a permanganate with an ammonium salt are forbidden for transport.

357A bulk packaging that emits hydrogen sulfide in sufficient concentration that vapors evolved from the crude oil can present an inhalation hazard must be marked as specified in ? 172.327 of this part.

360Vehicles only powered by lithium batteries must be assigned the identification number UN3171.

361Capacitors with an energy storage capacity of 0.3 Wh or less are not subject to the requirements of this subchapter. Energy storage capacity means the energy held by a capacitor, as calculated using the nominal voltage and capacitance. This entry does not apply to capacitors that by design maintain a terminal voltage (e.g., asymmetrical capacitors.)

362This entry applies to liquids, pastes or powders, pressurized with a propellant that meets the definition of a gas in ? 173.115. A chemical under pressure packaged in an aerosol dispenser must be transported under UN1950. The chemical under pressure must be classed based on the hazard characteristics of the components in the propellant; the liquid; or the solid. The following provisions also apply:

(a) If one of the components, which can be a pure substance or a mixture, is classed as flammable, the chemical under pressure must be classed as flammable in Division 2.1. Flammable components are flammable liquids and liquid mixtures, flammable solids and solid mixtures or flammable gases and gas mixtures meeting the following criteria:

(i) A flammable liquid is a liquid having a flashpoint of not more than 93 ?C (200 ?F);

(ii) A flammable solid is a solid that meets the criteria in ? 173.124 of this subchapter; or

(iii) A flammable gas is a gas that meets the criteria in ? 173.115 of this subchapter.

(b) Gases of Division 2.3 and gases with a subsidiary risk of 5.1 must not be used as a propellant in a chemical under pressure.

(c) Where the liquid or solid components are classed as Division 6.1, packing groups II or III, or Class 8, packing groups II or III, the chemical under pressure must be assigned a subsidiary risk of Division 6.1 or Class 8 and the appropriate identification number must be assigned. Components classed as Division 6.1, packing group I, or Class 8, packing group I, must not be offered for transportation and transported under this description.

(d) A chemical under pressure with components meeting the properties of : Class 1 (explosives); Class 3 (liquid desensitized explosives); Division 4.1 (self-reactive substances and solid desensitized explosives); Division 4.2 (substances liable to spontaneous combustion); Division 4.3 (substances which, in contact with water, emit flammable gases or toxic gases); Division 5.1 (oxidizing substances); Division 5.2 (organic peroxides); Division 6.2 (Infectious substances); or, Class 7 (Radioactive material), must not be offered for transportation under this description.

(e) A description to which Special provision 170 or TP7 is assigned in Column 7 of the ? 172.101 Hazardous Materials Table, and therefore requires air to be eliminated from the package vapor space by nitrogen or other means, must not be offered for transportation under this description.

365For manufactured instruments and articles containing mercury, see UN3506.

(2) ?A? codes. These provisions apply only to transportation by aircraft:

Code/Special Provisions

A1Single packagings are not permitted on passenger aircraft.

A2Single packagings are not permitted on aircraft.

A3For combination packagings, if glass inner packagings (including ampoules) are used, they must be packed with absorbent material in tightly closed metal receptacles before packing in outer packagings.

A4Liquids having an inhalation toxicity of Packing Group I are not permitted on aircraft.

A5Solids having an inhalation toxicity of Packing Group I are not permitted on passenger aircraft and may not exceed a maximum net quantity per package of 15 kg (33 pounds) on cargo aircraft.

A6For combination packagings, if plastic inner packagings are used, they must be packed in tightly closed metal receptacles before packing in outer packagings.A7Steel packagings must be corrosion-resistant or have protection against corrosion.

A8For combination packagings, if glass inner packagings (including ampoules) are used, they must be packed with cushioning material in tightly closed metal receptacles before packing in outer packagings.

A9For combination packagings, if plastic bags are used, they must be packed in tightly closed metal receptacles before packing in outer packagings.

A10When aluminum or aluminum alloy construction materials are used, they must be resistant to corrosion.

A11For combination packagings, when metal inner packagings are permitted, only specification cylinders constructed of metals which are compatible with the hazardous material may be used.

A13Bulk packagings are not authorized for transportation by aircraft.

A14This material is not authorized to be transported as a limited quantity or consumer commodity in accordance with ? 173.306 of this subchapter when transported aboard an aircraft.

A19Combination packagings consisting of outer fiber drums or plywood drums, with inner plastic packagings, are not authorized for transportation by aircraft.

A20Plastic bags as inner receptacles of combination packagings are not authorized for transportation by aircraft.

A29Combination packagings consisting of outer expanded plastic boxes with inner plastic bags are not authorized for transportation by aircraft.

A30Ammonium permanganate is not authorized for transportation on aircraft.

A34Aerosols containing a corrosive liquid in Packing Group II charged with a gas are not permitted for transportation by aircraft.

A35This includes any material which is not covered by any of the other classes but which has an anesthetic, narcotic, noxious or other similar properties such that, in the event of spillage or leakage on an aircraft, extreme annoyance or discomfort could be caused to crew members so as to prevent the correct performance of assigned duties.

A37This entry applies only to a material meeting the definition in ? 171.8 of this subchapter for self-defense spray.

A51Irrespective of the quantity limitations specified in Column (9A) of the ? 172.101 Table or ? 175.75(c), the following aircraft batteries may be transported on passenger aircraft as cargo:

a. Wet cell batteries, UN 2794 or UN 2795, up to a limit of 100kg net mass per package;

b. Lithium ion batteries, UN 3090, packages containing a single aircraft battery with a net mass not exceeding 35kg; and

c. Transport in accordance with this special provision must be noted on the dangerous goods transport document.

A53Refrigerating machines and refrigerating machine components are not subject to the requirements of this subchapter when containing less than 12 kg (26.4 pounds) of a non-flammable gas or when containing 12 L (3 gallons) or less of ammonia solution (UN2672) (see ? 173.307 of this subchapter).

A54Lithium batteries or lithium batteries contained or packed with equipment that exceed the maximum gross weight allowed by Column (9B) of the ? 172.101 Table may only be transported on cargo aircraft if approved by the Associate Administrator.

A55Prototype lithium batteries and cells that are packed with not more than 24 cells or 12 batteries per packaging that have not completed the test requirements in Sub-section 38.3 of the UN Manual of Tests and Criteria (incorporated by reference; see ? 171.7 of this subchapter) may be transported by cargo aircraft if approved by the Associate Administrator and provided the following requirements are met:

a. The cells and batteries must be transported in rigid outer packagings that conform to the requirements of Part 178 of this subchapter at the Packing Group I performance level; and

b. Each cell and battery must be protected against short circuiting, must be surrounded by cushioning material that is non-combustible and non-conductive, and must be individually packed in an inner packaging that is placed inside an outer specification packaging.

A56Radioactive material with a subsidiary hazard of Division 4.2, Packing Group I, must be transported in Type B packages when offered for transportation by aircraft. Radioactive material with a subsidiary hazard of Division 2.1 is forbidden from transport on passenger aircraft.

A60Sterilization devices, when containing less than 30 mL per inner packaging with not more than 150 mL per outer packaging, may be transported in accordance with the provisions in ? 173.4a, irrespective of ? 173.4a(b), provided such packagings were first subjected to comparative fire testing. Comparative fire testing between a package as prepared for transport (including the substance to be transported) and an identical package filled with water must show that the maximum temperature measured inside the packages during testing does not differ by more than 200 ?C (392 ?F). Packagings may include a vent to permit the slow escape of gas (i.e. not more than 0.1 mL/hour per 30 mL inner packaging at 20 ?C (68 ?F) produced from gradual decomposition.A82The quantity limits in columns (9A) and (9B) do not apply to human or animal body parts, whole organs or whole bodies known to contain or suspected of containing an infectious substance.

A100Primary (non-rechargeable) lithium batteries and cells are forbidden for transport aboard passenger-carrying aircraft. Secondary (rechargeable) lithium batteries and cells are authorized aboard passenger-carrying aircraft provided the net weight of lithium batteries does not exceed 5 kg (11 pounds) per package.

A101A primary lithium battery or cell packed with or contained in equipment is forbidden for transport aboard a passenger carrying aircraft unless the equipment and the battery conform to the following provisions and the package contains no more than the number of lithium batteries or cells necessary to power the intended piece of equipment:

(1) The lithium content of each cell, when fully charged, is not more than 5 grams.

(2) The aggregate lithium content of the anode of each battery, when fully charged, is not more than 25 grams.

(3) The net weight of lithium batteries does not exceed 5 kg (11 pounds).

A103Equipment is authorized aboard passenger-carrying aircraft provided the net weight of lithium batteries does not exceed 5 kg (11 pounds) per package.

A104The net weight of secondary lithium batteries or cells contained in equipment may not exceed 5 kg (11 pounds) in packages that are authorized aboard passenger carrying aircraft.

A105The total net quantity of dangerous goods contained in one package, excluding magnetic material, must not exceed the following:

a. 1 kg (2.2 pounds) in the case of solids;

b. 0.5 L (0.1 gallons) in the case of liquids;

c. 0.5 kg (1.1 pounds) in the case of Division 2.2 gases; or

d. any combination thereof.

A112Notwithstanding the quantity limits shown in Column (9A) and (9B) for this entry, the following IBCs are authorized for transportation aboard passenger and cargo-only aircraft. Each IBC may not exceed a maximum net quantity of 1,000 kg:

a. Metal: 11A, 11B, 11N, 21A, 21B and 21N

b. Rigid plastics: 11H1, 11H2, 21H1 and 21H2

c. Composite with plastic inner receptacle: 11HZ1, 11HZ2, 21HZ1 and 21HZ2

d. Fiberboard: 11G

e. Wooden: 11C, 11D and 11F (with inner liners)

f. Flexible: 13H2, 13H3, 13H4, 13H5, 13L2, 13L3, 13L4, 13M1 and 13M2 (flexible IBCs must be sift-proof and water resistant or must be fitted with a sift-proof and water resistant liner).

A189Except where the defining criteria of another class or division are met, concentrations of formaldehyde solution:

a. With less than 25 percent but not less than 10 percent formaldehyde, must be described as UN3334, Aviation regulated liquid, n.o.s.; and

b. With less than 10 percent formaldehyde, are not subject to this subchapter.

A191Notwithstanding the Division 6.1 subsidiary risk for this description, the toxic subsidiary risk label and the requirement to indicate the subsidiary risk on the shipping paper are not required for manufactured articles containing less than 5 kg (11 pounds) of mercury.

A200These articles must be transported as cargo and may not be carried aboard an aircraft by passengers or crewmembers in carry-on baggage, checked baggage, or on their person unless specifically authorized in ? 175.10.

(3) ?B? codes. These provisions apply only to bulk packagings. Except as otherwise provided in this subchapter, these special provisions do not apply to UN portable tanks or IBCs:

Code/Special Provisions

B1If the material has a flash point at or above 38 ?C (100 ?F) and below 93 ?C (200 ?F), then the bulk packaging requirements of ? 173.241 of this subchapter are applicable. If the material has a flash point of less than 38 ?C (100 ?F), then the bulk packaging requirements of ? 173.242 of this subchapter are applicable.

B2MC 300, MC 301, MC 302, MC 303, MC 305, and MC 306 and DOT 406 cargo tanks are not authorized.

B3MC 300, MC 301, MC 302, MC 303, MC 305, and MC 306 and DOT 406 cargo tanks and DOT 57 portable tanks are not authorized.

B4MC 300, MC 301, MC 302, MC 303, MC 305, and MC 306 and DOT 406 cargo tanks are not authorized.

B5Only ammonium nitrate solutions with 35 percent or less water that will remain completely in solution under all conditions of transport at a maximum lading temperature of 116 ?C (240 ?F) are authorized for transport in the following bulk packagings: MC 307, MC 312, DOT 407 and DOT 412 cargo tanks with at least 172 kPa (25 psig) design pressure. The packaging shall be designed for a working temperature of at least 121 ?C (250 ?F). Only Specifications MC 304, MC 307 or DOT 407 cargo tank motor vehicles are authorized for transportation by vessel.

B6Packagings shall be made of steel.

B7Safety relief devices are not authorized on multi-unit tank car tanks. Openings for safety relief devices on multi-unit tank car tanks shall be plugged or blank flanged.

B8Packagings shall be made of nickel, stainless steel, or steel with nickel, stainless steel, lead or other suitable corrosion resistant metallic lining.

B9Bottom outlets are not authorized.

B10MC 300, MC 301, MC 302, MC 303, MC 305, and MC 306 and DOT 406 cargo tanks, and DOT 57 portable tanks are not authorized.

B11Tank car tanks must have a test pressure of at least 2,068.5 kPa (300 psig). Cargo and portable tanks must have a design pressure of at least 1,207 kPa (175 psig).

B13A nonspecification cargo tank motor vehicle authorized in ? 173.247 of this subchapter must be at least equivalent in design and in construction to a DOT 406 cargo tank or MC 306 cargo tank (if constructed before August 31, 1995), except as follows:

a. Packagings equivalent to MC 306 cargo tanks are excepted from the certification, venting, and emergency flow requirements of the MC 306 specification.

b. Packagings equivalent to DOT 406 cargo tanks are excepted from ?? 178.345-7(d)(5), circumferential reinforcements; 178.345-10, pressure relief; 178.345-11, outlets; 178.345-14, marking, and 178.345-15, certification.

c. Packagings are excepted from the design stress limits at elevated temperatures, as described in Section VIII of the ASME Code (IBR, see ? 171.7 of this subchapter). However, the design stress limits may not exceed 25 percent of the stress for 0 temper at the maximum design temperature of the cargo tank, as specified in the Aluminum Association's ?Aluminum Standards and Data? (IBR, see ? 171.7 of this subchapter).

B14Each bulk packaging, except a tank car or a multi-unit-tank car tank, must be insulated with an insulating material so that the overall thermal conductance at 15.5 ?C (60 ?F) is no more than 1.5333 kilojoules per hour per square meter per degree Celsius (0.075 Btu per hour per square foot per degree Fahrenheit) temperature differential. Insulating materials must not promote corrosion to steel when wet.

B15Packagings must be protected with non-metallic linings impervious to the lading or have a suitable corrosion allowance.

B16The lading must be completely covered with nitrogen, inert gas or other inert materials.

B18Open steel hoppers or bins are authorized.

B23Tanks must be made of steel that is rubber lined or unlined. Unlined tanks must be passivated before being placed in service. If unlined tanks are washed out with water, they must be repassivated prior to return to service. Lading in unlined tanks must be inhibited so that the corrosive effect on steel is not greater than that of hydrofluoric acid of 65 percent concentration.

B25Packagings must be made from monel or nickel or monel-lined or nickel-lined steel.

B26Tanks must be insulated. Insulation must be at least 100 mm (3.9 inches) except that the insulation thickness may be reduced to 51 mm (2 inches) over the exterior heater coils. Interior heating coils are not authorized. The packaging may not be loaded with a material outside of the packaging's design temperature range. In addition, the material also must be covered with an inert gas or the container must be filled with water to the tank's capacity. After unloading, the residual material also must be covered with an inert gas or the container must be filled with water to the tank's capacity.

B27Tanks must have a service pressure of 1,034 kPa (150 psig). Tank car tanks must have a test pressure rating of 1,379 kPa (200 psig). Lading must be blanketed at all times with a dry inert gas at a pressure not to exceed 103 kPa (15 psig).

B28Packagings must be made of stainless steel.

B30MC 312, MC 330, MC 331 and DOT 412 cargo tanks and DOT 51 portable tanks must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of ? 173.24b(b) of this subchapter. Thickness of stainless steel for tank shell and heads for cargo tanks and portable tanks must be the greater of 7.62 mm (0.300 inch) or the thickness required for a tank with a design pressure at least equal to 1.5 times the vapor pressure of the lading at 46 ?C (115 ?F). In addition, MC 312 and DOT 412 cargo tank motor vehicles must:

a. Be ASME Code (U) stamped for 100% radiography of all pressure-retaining welds;

b. Have accident damage protection which conforms with ? 178.345-8 of this subchapter;

c. Have a MAWP or design pressure of at least 87 psig: and

d. Have a bolted manway cover.

B32MC 312, MC 330, MC 331, DOT 412 cargo tanks and DOT 51 portable tanks must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of ? 173.24b(b) of this subchapter. Thickness of stainless steel for tank shell and heads for cargo tanks and portable tanks must be the greater of 6.35 mm (0.250 inch) or the thickness required for a tank with a design pressure at least equal to 1.3 times the vapor pressure of the lading at 46 ?C (115 ?F). In addition, MC 312 and DOT 412 cargo tank motor vehicles must:

a. Be ASME Code (U) stamped for 100% radiography of all pressure-retaining welds;

b. Have accident damage protection which conforms with ? 178.345-8 of this subchapter;c. Have a MAWP or design pressure of at least 87 psig; and

d. Have a bolted manway cover.

B33MC 300, MC 301, MC 302, MC 303, MC 305, MC 306, and DOT 406 cargo tanks equipped with a 1 psig normal vent used to transport gasoline must conform to Table I of this Special Provision. Based on the volatility class determined by using ASTM D 439 and the Reid vapor pressure (RVP) of the particular gasoline, the maximum lading pressure and maximum ambient temperature permitted during the loading of gasoline may not exceed that listed in Table I.

Table I?Maximum Ambient Temperature?Gasoline

Note 1: Based on maximum lading pressure of 1 psig at top of cargo tank.

ASTM D439 volatility class Maximum lading and ambient temperature (see note 1)
A 131 ?F
(RVP<=9.0 psia)
B 124 ?F
(RVP<=10.0 psia)
C 116 ?F
(RVP<=11.5 psia)
D 107 ?F
(RVP<=13.5 psia)
E 100 ?F
(RVP<=15.0 psia)

B35Tank cars containing hydrogen cyanide may be alternatively marked ?Hydrocyanic acid, liquefied? if otherwise conforming to marking requirements in subpart D of this part. Tank cars marked ?HYDROCYANIC ACID? prior to October 1, 1991 do not need to be remarked.

B42Tank cars constructed before March 16, 2009, must have a test pressure of 34.47 Bar (500 psig) or greater and conform to Class 105J. Each tank car must have a reclosing pressure relief device having a start-to-discharge pressure of 10.34 Bar (150 psig). The tank car specification may be marked to indicate a test pressure of 13.79 Bar (200 psig).

B44All parts of valves and safety relief devices in contact with lading must be of a material which will not cause formation of acetylides.

B45Each tank must have a reclosing combination pressure relief device equipped with stainless steel or platinum rupture discs approved by the AAR Tank Car Committee.

B46The detachable protective housing for the loading and unloading valves of multi-unit tank car tanks must withstand tank test pressure and must be approved by the Associate Administrator.

B47Each tank may have a reclosing pressure relief device having a start-to-discharge pressure setting of 310 kPa (45 psig).

B48Portable tanks in sodium metal service may be visually inspected at least once every 5 years instead of being retested hydrostatically. Date of the visual inspection must be stenciled on the tank near the other required markings.

B49Tanks equipped with interior heater coils are not authorized. Single unit tank car tanks must have a reclosing pressure relief device having a start-to-discharge pressure set at no more than 1551 kPa (225 psig).

B52Notwithstanding the provisions of ? 173.24b of this subchapter, non-reclosing pressure relief devices are authorized on DOT 57 portable tanks.

B53Packagings must be made of either aluminum or steel.

B54Open-top, sift-proof rail cars are also authorized.

B55Water-tight, sift-proof, closed-top, metal-covered hopper cars, equipped with a venting arrangement (including flame arrestors) approved by the Associate Administrator are also authorized.

B56Water-tight, sift-proof, closed-top, metal-covered hopper cars are also authorized if the particle size of the hazardous material is not less than 149 microns.

B57Class 115A tank car tanks used to transport chloroprene must be equipped with a non-reclosing pressure relief device of a diameter not less than 305 mm (12 inches) with a maximum rupture disc pressure of 310 kPa (45 psig).

B59Water-tight, sift-proof, closed-top, metal-covered hopper cars are also authorized provided that the lading is covered with a nitrogen blanket.

B61Written procedures covering details of tank car appurtenances, dome fittings, safety devices, and marking, loading, handling, inspection, and testing practices must be approved by the Associate Administrator before any single unit tank car tank is offered for transportation.

B65Tank cars constructed before March 16, 2009, must have a test pressure of 34.47 Bar (500 psig) or greater and conform to Class 105A. Each tank car must have a reclosing pressure relief device having a start-to-discharge pressure of 15.51 Bar (225 psig). The tank car specification may be marked to indicate a test pressure of 20.68 Bar (300 psig).

B66Each tank must be equipped with gas tight valve protection caps. Outage must be sufficient to prevent tanks from becoming liquid full at 55 ?C (130 ?F). Specification 110A500W tanks must be stainless steel.

B67All valves and fittings must be protected by a securely attached cover made of metal not subject to deterioration by the lading, and all valve openings, except safety valve, must be fitted with screw plugs or caps to prevent leakage in the event of valve failure.B68Sodium must be in a molten condition when loaded and allowed to solidify before shipment. Outage must be at least 5 percent at 98 ?C (208 ?F). Bulk packagings must have exterior heating coils fusion welded to the tank shell which have been properly stress relieved. The only tank car tanks authorized are Class DOT 105 tank cars having a test pressure of 2,069 kPa (300 psig) or greater.

B69Dry sodium cyanide or potassium cyanide may be shipped in the following sift-proof and weather-resistant packagings: metal covered hopper cars, covered motor vehicles, portable tanks, or non-specification bins.

B70If DOT 103ANW tank car tank is used: All cast metal in contact with the lading must have 96.7 percent nickel content; and the lading must be anhydrous and free from any impurities.

B76Tank cars constructed before March 16, 2009, must have a test pressure of 20.68 Bar (300 psig) or greater and conform to Class 105S, 112J, 114J or 120S. Each tank car must have a reclosing pressure relief device having a start-to-discharge pressure of 10.34 Bar (150 psig). The tank car specification may be marked to indicate a test pressure of 13.79 Bar (200 psig).

B77Other packaging are authorized when approved by the Associate Administrator.

B78Tank cars must have a test pressure of 4.14 Bar (60 psig) or greater and conform to Class 103, 104, 105, 109, 111, 112, 114 or 120. Heater pipes must be of welded construction designed for a test pressure of 500 psig. A 25 mm (1 inch) woven lining of asbestos or other approved material must be placed between the bolster slabbing and the bottom of the tank. If a tank car tank is equipped with a non-reclosing pressure relief device, the rupture disc must be perforated with a 3.2 mm (0.13 inch) diameter hole. If a tank car tank is equipped with a reclosing pressure relief valve, the tank must also be equipped with a vacuum relief valve.

B80Each cargo tank must have a minimum design pressure of 276 kPa (40 psig).

B81Venting and pressure relief devices for tank car tanks and cargo tanks must be approved by the Associate Administrator.

B82Cargo tanks and portable tanks are not authorized.

B83Bottom outlets are prohibited on tank car tanks transporting sulfuric acid in concentrations over 65.25 percent.

B84Packagings must be protected with non-metallic linings impervious to the lading or have a suitable corrosion allowance for sulfuric acid or spent sulfuric acid in concentration up to 65.25 percent.

B85Cargo tanks must be marked with the name of the lading in accordance with the requirements of ? 172.302(b).

B90Steel tanks conforming or equivalent to ASME specifications which contain solid or semisolid residual motor fuel antiknock mixture (including rust, scale, or other contaminants) may be shipped by rail freight or highway. The tank must have been designed and constructed to be capable of withstanding full vacuum. All openings must be closed with gasketed blank flanges or vapor tight threaded closures.

B115Rail cars, highway trailers, roll-on/roll-off bins, or other non-specification bulk packagings are authorized. Packagings must be sift-proof, prevent liquid water from reaching the hazardous material, and be provided with sufficient venting to preclude dangerous accumulation of flammable, corrosive, or toxic gaseous emissions such as methane, hydrogen, and ammonia. The material must be loaded dry.

B120The use of flexible bulk containers conforming to the requirements in subpart R and subpart S of part 178 of this subchapter is permitted.

(4) IB Codes and IP Codes. These provisions apply only to transportation in IBCs and Large Packagings. Table 1 authorizes IBCs for specific proper shipping names through the use of IB Codes assigned in the ? 172.101 table of this subchapter. Table 2 defines IP Codes on the use of IBCs that are assigned to specific commodities in the ? 172.101 Table of this subchapter. Table 3 authorizes Large Packagings for specific proper shipping names through the use of IB Codes assigned in the ? 172.101 table of this subchapter. Large Packagings are authorized for the Packing Group III entries of specific proper shipping names when either Special Provision IB3 or IB8 is assigned to that entry in the ? 172.101 Table. When no IB code is assigned in the ? 172.101 Table for a specific proper shipping name, or in ? 173.225(e) Organic Peroxide Table for Type F organic peroxides, use of an IBC or Large Packaging for the material may be authorized when approved by the Associate Administrator. The letter ?Z? shown in the marking code for composite IBCs must be replaced with a capital code letter designation found in ? 178.702(a)(2) of this subchapter to specify the material used for the other packaging. Tables 1, 2, and 3 follow:

Table 1?IB Codes (IBC Codes)

IBC code Authorized IBCs
IB1

Authorized IBCs: Metal (31A, 31B and 31N).

Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 ?C (1.1 bar at 122 ?F), or 130 kPa at 55 ?C (1.3 bar at 131 ?F) are authorized.
IB2

Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1).

Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 ?C (1.1 bar at 122 ?F), or 130 kPa at 55 ?C (1.3 bar at 131 ?F) are authorized.
IB3

Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1 and 31HA2, 31HB2, 31HN2, 31HD2 and 31HH2).

Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 ?C (1.1 bar at 122 ?F), or 130 kPa at 55 ?C (1.3 bar at 131 ?F) are authorized, except for UN2672 (also see Special provision IP8 in Table 2 for UN2672).
IB4

Authorized IBCs: Metal (11A, 11B, 11N, 21A, 21B and 21N).
IB5

Authorized IBCs: Metal (11A, 11B, 11N, 21A, 21B and 21N); Rigid plastics (11H1, 11H2, 21H1, and 21H2); Composite (11HZ1and 21HZ1).
IB6

Authorized IBCs: Metal (11A, 11B, 11N, 21A, 21B and 21N); Rigid plastics (11H1, 11H2, 21H1, and 21H2); Composite (11HZ1, 11HZ2, 21HZ1, and 21HZ2).

Additional Requirement: Composite IBCs 11HZ2 and 21HZ2 may not be used when the hazardous materials being transported may become liquid during transport.
IB7

Authorized IBCs: Metal (11A, 11B, 11N, 21A, 21B and 21N); Rigid plastics (11H1, 11H2, 21H1, and 21H2); Composite (11HZ1, 11HZ2, 21HZ1, and 21HZ2); Wooden (11C, 11D and 11F).

Additional Requirement: Liners of wooden IBCs must be sift-proof.
IB8

Authorized IBCs: Metal (11A, 11B, 11N, 21A, 21B and 21N); Rigid plastics (11H1, 11H2, 21H1, and 21H2); Composite (11HZ1, 11HZ2, 21HZ1, and 21HZ2); Fiberboard (11G); Wooden (11C, 11D and 11F); Flexible (13H1, 13H2, 13H3, 13H4, 13H5, 13L1, 13L2, 13L3, 13L4, 13M1 or 13M2).
IB9 IBCs are only authorized if approved by the Associate Administrator.

Table 2?IP Codes

IP Code

IP1 IBCs must be packed in closed freight containers or a closed transport vehicle.
IP2 When IBCs other than metal or rigid plastics IBCs are used, they must be offered for transportation in a closed freight container or a closed transport vehicle.
IP3 Flexible IBCs must be sift-proof and water-resistant or must be fitted with a sift-proof and water-resistant liner.
IP4 Flexible, fiberboard or wooden IBCs must be sift-proof and water-resistant or be fitted with a sift-proof and water-resistant liner.
IP5 IBCs must have a device to allow venting. The inlet to the venting device must be located in the vapor space of the IBC under maximum filling conditions.
IP6 Non-specification bulk bins are authorized.
IP7 For UN identification numbers 1327, 1363, 1364, 1365, 1386, 1841, 2211, 2217, 2793 and 3314, IBCs are not required to meet the IBC performance tests specified in part 178, subpart N of this subchapter.
IP8 Ammonia solutions may be transported in rigid or composite plastic IBCs (31H1, 31H2 and 31HZ1) that have successfully passed, without leakage or permanent deformation, the hydrostatic test specified in ? 178.814 of this subchapter at a test pressure that is not less than 1.5 times the vapor pressure of the contents at 55 ?C (131 ?F).
IP13 Transportation by vessel in IBCs is prohibited.
IP14 Air must be eliminated from the vapor space by nitrogen or other means.
IP15 For UN2031 with more than 55% nitric acid, rigid plastic IBCs and composite IBCs with a rigid plastic inner receptacle are authorized for two years from the date of IBC manufacture.
IP20 Dry sodium cyanide or potassium cyanide is also permitted in siftproof, water-resistant, fiberboard IBCs when transported in closed freight containers or transport vehicles.

Table 3?IB Codes

[Large packaging authorizations]

IB3 Authorized Large Packagings (LIQUIDS)(PG III materials only) 2

Inner packagings: Large outer packagings:
Glass10 liter steel (50A).
Plastics30 liter aluminum (50B).
Metal40 liter metal other than steel or aluminum (50N).

rigid plastics (50H).

natural wood (50C).

plywood (50D).

reconstituted wood (50F).

rigid fiberboard (50G).

1 Flexible plastic (51H) Large Packagings are only authorized for use with flexible inner packagings.

2 Except when authorized under Special Provision 41.

IB8 Authorized Large Packagings (SOLIDS)(PG III materials only) 2

Inner packagings: Large outer packagings:
Glass10 kg steel (50A).
Plastics50 kg aluminum (50B).
Metal50 kg metal other than steel or aluminum (50N).
Paper50 kg flexible plastics (51H). 1

Fiber50 kg rigid plastics (50H).

natural wood (50C).

plywood (50D).

reconstituted wood (50F).

rigid fiberboard (50G).

(5) ?N? codes. These provisions apply only to non-bulk packagings:

Code/Special Provisions

N3Glass inner packagings are permitted in combination or composite packagings only if the hazardous material is free from hydrofluoric acid.

N4For combination or composite packagings, glass inner packagings, other than ampoules, are not permitted.

N5Glass materials of construction are not authorized for any part of a packaging which is normally in contact with the hazardous material.

N6Battery fluid packaged with electric storage batteries, wet or dry, must conform to the packaging provisions of ? 173.159 (g) or (h) of this subchapter.

N7The hazard class or division number of the material must be marked on the package in accordance with ? 172.302 of this subchapter. However, the hazard label corresponding to the hazard class or division may be substituted for the marking.

N8Nitroglycerin solution in alcohol may be transported under this entry only when the solution is packed in metal cans of not more than 1 L capacity each, overpacked in a wooden box containing not more than 5 L. Metal cans must be completely surrounded with absorbent cushioning material. Wooden boxes must be completely lined with a suitable material impervious to water and nitroglycerin.

N11This material is excepted for the specification packaging requirements of this subchapter if the material is packaged in strong, tight non-bulk packaging meeting the requirements of subparts A and B of part 173 of this subchapter.

N12Plastic packagings are not authorized.

N20A 5M1 multi-wall paper bag is authorized if transported in a closed transport vehicle.

N25Steel single packagings are not authorized.

N32Aluminum materials of construction are not authorized for single packagings.

N33Aluminum drums are not authorized.

N34Aluminum construction materials are not authorized for any part of a packaging which is normally in contact with the hazardous material.

N36Aluminum or aluminum alloy construction materials are permitted only for halogenated hydrocarbons that will not react with aluminum.

N37This material may be shipped in an integrally-lined fiber drum (1G) which meets the general packaging requirements of subpart B of part 173 of this subchapter, the requirements of part 178 of this subchapter at the packing group assigned for the material and to any other special provisions of column 7 of the ? 172.101 table.

N40This material is not authorized in the following packagings:

a. A combination packaging consisting of a 4G fiberboard box with inner receptacles of glass or earthenware;

b. A single packaging of a 4C2 sift-proof, natural wood box; or

c. A composite packaging 6PG2 (glass, porcelain or stoneware receptacles within a fiberboard box).

N41Metal construction materials are not authorized for any part of a packaging which is normally in contact with the hazardous material.N421A1 drums made of carbon steel with thickness of body and heads of not less than 1.3 mm (0.050 inch) and with a corrosion-resistant phenolic lining are authorized for stabilized benzyl chloride if tested and certified to the Packing Group I performance level at a specific gravity of not less than 1.8.

N43Metal drums are permitted as single packagings only if constructed of nickel or monel.

N45Copper cartridges are authorized as inner packagings if the hazardous material is not in dispersion.

N65Outage must be sufficient to prevent cylinders or spheres from becoming liquid full at 55 ?C (130 ?F). The vacant space (outage) may be charged with a nonflammable nonliquefied compressed gas if the pressure in the cylinder or sphere at 55 ?C (130 ?F) does not exceed 125 percent of the marked service pressure.

N73Packagings consisting of outer wooden or fiberboard boxes with inner glass, metal or other strong containers; metal or fiber drums; kegs or barrels; or strong metal cans are authorized and need not conform to the requirements of part 178 of this subchapter.

N74Packages consisting of tightly closed inner containers of glass, earthenware, metal or polyethylene, capacity not over 0.5 kg (1.1 pounds) securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, not over 15 kg (33 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter.

N75Packages consisting of tightly closed inner packagings of glass, earthenware or metal, securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, capacity not over 2.5 kg (5.5 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter.

N76For materials of not more than 25 percent active ingredient by weight, packages consisting of inner metal packagings not greater than 250 mL (8 ounces) capacity each, packed in strong outer packagings together with sufficient absorbent material to completely absorb the liquid contents are authorized and need not conform to the requirements of part 178 of this subchapter.

N77For materials of not more than two percent active ingredients by weight, packagings need not conform to the requirements of part 178 of this subchapter, if liquid contents are absorbed in an inert material.

N78Packages consisting of inner glass, earthenware, or polyethylene or other nonfragile plastic bottles or jars not over 0.5 kg (1.1 pounds) capacity each, or metal cans not over five pounds capacity each, packed in outer wooden boxes, barrels or kegs, or fiberboard boxes are authorized and need not conform to the requirements of part 178 of this subchapter. Net weight of contents in fiberboard boxes may not exceed 29 kg (64 pounds). Net weight of contents in wooden boxes, barrels or kegs may not exceed 45 kg (99 pounds).

N79Packages consisting of tightly closed metal inner packagings not over 0.5 kg (1.1 pounds) capacity each, packed in outer wooden or fiberboard boxes, or wooden barrels, are authorized and need not conform to the requirements of part 178 of this subchapter. Net weight of contents may not exceed 15 kg (33 pounds).

N80Packages consisting of one inner metal can, not over 2.5 kg (5.5 pounds) capacity, packed in an outer wooden or fiberboard box, or a wooden barrel, are authorized and need not conform to the requirements of part 178 of this subchapter.

N82See ? 173.115 of this subchapter for classification criteria for flammable aerosols.

N83This material may not be transported in quantities of more than 11.5 kg (25.4 lbs) per package.

N84The maximum quantity per package is 500 g (1.1 lbs.).

N85Packagings certified at the Packing Group I performance level may not be used.

N86UN pressure receptacles made of aluminum alloy are not authorized.

N87The use of copper valves on UN pressure receptacles is prohibited.

N88Any metal part of a UN pressure receptacle in contact with the contents may not contain more than 65% copper, with a tolerance of 1%.

N89When steel UN pressure receptacles are used, only those bearing the ?H? mark are authorized.

N90Metal packagings are not authorized.

(6) ?R? codes. These provisions apply only to transportation by rail.

R1A person who offers for transportation tank cars containing sulfur, molten or residue of sulfur, molten may reference the Sulfur Institute's, ?Molten Sulphur Rail Tank Car Guidance document? (see ? 171.7 of this subchapter) to identify tank cars that may pose a risk in transportation due to the accumulation of formed, solid sulfur on the outside of the tank.

(7) ?T? codes. (i) These provisions apply to the transportation of hazardous materials in UN portable tanks. Portable tank instructions specify the requirements applicable to a portable tank when used for the transportation of a specific hazardous material. These requirements must be met in addition to the design and construction specifications in part 178 of this subchapter. Portable tank instructions T1 through T22 specify the applicable minimum test pressure, the minimum shell thickness (in reference steel), bottom opening requirements and pressure relief requirements. Liquefied compressed gases are assigned to portable tank instruction T50. Refrigerated liquefied gases that are authorized to be transported in portable tanks are specified in tank instruction T75.

(ii) The following table specifies the portable tank requirements applicable to ?T? Codes T1 through T22. Column 1 specifies the ?T? Code. Column 2 specifies the minimum test pressure, in bar (1 bar = 14.5 psig), at which the periodic hydrostatic testing required by ? 180.605 of this subchapter must be conducted. Column 3 specifies the section reference for minimum shell thickness or, alternatively, the minimum shell thickness value. Column 4 specifies the applicability of ? 178.275(g)(3) of this subchapter for the pressure relief devices. When the word ?Normal? is indicated, ? 178.275(g)(3) of this subchapter does not apply. Column 5 references applicable requirements for bottom openings in part 178 of this subchapter. ?Prohibited? means bottom openings are prohibited, and ?Prohibited for liquids? means bottom openings are authorized for solid material only. The table follows:

Table of Portable Tank T Codes T1-T22

[Portable tank codes T1-T22 apply to liquid and solid hazardous materials of Classes 3 through 9 which are transported in portable tanks.]

Portable tank instruction(1)

Minimum test pressure (bar)(2)

Minimum shell thickness(in mm-reference steel)

(See ? 178.274(d))

(3)

Pressure-relief requirements(See ? 178.275(g))

(4)

Bottom openingrequirements

(See ? 178.275(d))

(5)

T1 1.5 ? 178.274(d)(2) Normal ? 178.275(d)(2)
T2 1.5 ? 178.274(d)(2) Normal ? 178.275(d)(3)
T3 2.65 ? 178.274(d)(2) Normal ? 178.275(d)(2)
T4 2.65 ? 178.274(d)(2) Normal ? 178.275(d)(3)
T5 2.65 ? 178.274(d)(2) ? 178.275(g)(3) Prohibited
T6 4 ? 178.274(d)(2) Normal ? 178.275(d)(2)
T7 4 ? 178.274(d)(2) Normal ? 178.275(d)(3)
T8 4 ? 178.274(d)(2) Normal Prohibited
T9 4 6 mm Normal Prohibited for liquids.
T10 4 6 mm ? 178.275(g)(3) Prohibited
T11 6 ? 178.274(d)(2) Normal ? 178.275(d)(3)
T12 6 ? 178.274(d)(2) ? 178.275(g)(3) ? 178.275(d)(3)
T13 6 6 mm Normal Prohibited
T14 6 6 mm ? 178.275(g)(3) Prohibited
T15 10 ? 178.274(d)(2) Normal ? 178.275(d)(3)
T16 10 ? 178.274(d)(2) ? 178.275(g)(3) ? 178.275(d)(3)
T17 10 6 mm Normal ? 178.275(d)(3)
T18 10 6 mm ? 178.275(g)(3) ? 178.275(d)(3)
T19 10 6 mm ? 178.275(g)(3) Prohibited
T20 10 8 mm ? 178.275(g)(3) Prohibited
T21 10 10 mm Normal Prohibited for liquids. ? 178.275(d)(2).
T22 10 10 mm ? 178.275(g)(3) Prohibited

(iii) T50When portable tank instruction T50 is indicated in Column (7) of the ? 172.101 Hazardous Materials Table, the applicable liquefied compressed gas and chemical under pressure descriptions are authorized to be transported in portable tanks in accordance with the requirements of ? 173.313 of this subchapter.

(iv) T75. When portable tank instruction T75 is referenced in Column (7) of the ? 172.101 Table, the applicable refrigerated liquefied gases are authorized to be transported in portable tanks in accordance with the requirements of ? 178.277 of this subchapter.

(v) UN and IM portable tank codes/special provisions. When a specific portable tank instruction is specified by a ?T? Code in Column (7) of the ? 172.101 Table for a specific hazardous material, a specification portable tank conforming to an alternative tank instruction may be used if:

(A) The alternative portable tank has a higher or equivalent test pressure (for example, 4 bar when 2.65 bar is specified);

(B) The alternative portable tank has greater or equivalent wall thickness (for example, 10 mm when 6 mm is specified);

(C) The alternative portable tank has a pressure relief device as specified in the ?T? Code. If a frangible disc is required in series with the reclosing pressure relief device for the specified portable tank, the alternative portable tank must be fitted with a frangible disc in series with the reclosing pressure relief device; and

(D) With regard to bottom openings?

(1) When two effective means are specified, the alternative portable tank is fitted with bottom openings having two or three effective means of closure or no bottom openings; or

(2) When three effective means are specified, the portable tank has no bottom openings or three effective means of closure; or

(3) When no bottom openings are authorized, the alternative portable tank must not have bottom openings.

(vi) Except when an organic peroxide is authorized under ? 173.225(g), if a hazardous material is not assigned a portable tank ?T? Code, the hazardous material may not be transported in a portable tank unless approved by the Associate Administrator.

(8) ?TP? codes. (i) These provisions apply to the transportation of hazardous materials in IM and UN Specification portable tanks. Portable tank special provisions are assigned to certain hazardous materials to specify requirements that are in addition to those provided by the portable tank instructions or the requirements in part 178 of this subchapter. Portable tank special provisions are designated with the abbreviation TP (tank provision) and are assigned to specific hazardous materials in Column (7) of the ? 172.101 Table.

(ii) The following is a list of the portable tank special provisions:

Code/Special Provisions

TP1The maximum degree of filling must not exceed the degree of filling determined by the following:

EN21JN01.000

Where:

tr is the maximum mean bulk temperature during transport, and tf is the temperature in degrees celsius of the liquid during filling.

TP2a. The maximum degree of filling must not exceed the degree of filling determined by the following:

EN21JN01.001

Where:

tr is the maximum mean bulk temperature during transport,

tf is the temperature in degrees celsius of the liquid during filling, and? is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius.

b. For liquids transported under ambient conditions ? may be calculated using the formula:

EN21JN01.009

Where:

d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 ?C (59 ?F) and 50 ?C (122 ?F), respectively.

TP3The maximum degree of filling (in %) for solids transported above their melting points and for elevated temperature liquids shall be determined by the following:

ER14JN05.003

Where: df and dr are the mean densities of the liquid at the mean temperature of the liquid during filling and the maximum mean bulk temperature during transport respectively.

TP4The maximum degree of filling for portable tanks must not exceed 90%.

TP5For a portable tank used for the transport of flammable refrigerated liquefied gases or refrigerated liquefied oxygen, the maximum rate at which the portable tank may be filled must not exceed the liquid flow capacity of the primary pressure relief system rated at a pressure not exceeding 120 percent of the portable tank's design pressure. For portable tanks used for the transport of refrigerated liquefied helium and refrigerated liquefied atmospheric gas (except oxygen), the maximum rate at which the tank is filled must not exceed the liquid flow capacity of the pressure relief device rated at 130 percent of the portable tank's design pressure. Except for a portable tank containing refrigerated liquefied helium, a portable tank shall have an outage of at least two percent below the inlet of the pressure relief device or pressure control valve, under conditions of incipient opening, with the portable tank in a level attitude. No outage is required for helium.

TP6The tank must be equipped with a pressure release device which prevent a tank from bursting under fire engulfment conditions (the conditions prescribed in CGA pamphlet S-1.2 (see ? 171.7 of this subchapter) or alternative conditions approved by the Associate Administrator may be used to consider the fire engulfment condition), taking into account the properties of the hazardous material to be transported.

TP7The vapor space must be purged of air by nitrogen or other means.

TP8A portable tank having a minimum test pressure of 1.5 bar (150 kPa) may be used when the flash point of the hazardous material transported is greater than 0 ?C (32 ?F).

TP9A hazardous material assigned to special provision TP9 in Column (7) of the ? 172.101 Table may only be transported in a portable tank if approved by the Associate Administrator.

TP10The portable tank must be fitted with a lead lining at least 5 mm (0.2 inches) thick. The lead lining must be tested annually to ensure that it is intact and functional. Another suitable lining material may be used if approved by the Associate Administrator.

TP12This material is considered highly corrosive to steel.

TP13Self-contained breathing apparatus must be provided when this hazardous material is transported by sea.

TP16The portable tank must be protected against over and under pressurization which may be experienced during transportation. The means of protection must be approved by the approval agency designated to approve the portable tank in accordance with the procedures in part 107, subpart E, of this subchapter. The pressure relief device must be preceded by a frangible disk in accordance with the requirements in ? 178.275(g)(3) of this subchapter to prevent crystallization of the product in the pressure relief device.

TP17Only inorganic non-combustible materials may be used for thermal insulation of the tank.

TP18The temperature of this material must be maintained between 18 ?C (64.4 ?F) and 40 ?C (104 ?F) while in transportation. Portable tanks containing solidified methacrylic acid must not be reheated during transportation.

TP19The calculated wall thickness must be increased by 3 mm at the time of construction. Wall thickness must be verified ultrasonically at intervals midway between periodic hydraulic tests (every 2.5 years). The portable tank must not be used if the wall thickness is less than that prescribed by the applicable T code in Column (7) of the Table for this material.

TP20This hazardous material must only be transported in insulated tanks under a nitrogen blanket.

TP21The wall thickness must not be less than 8 mm. Portable tanks must be hydraulically tested and internally inspected at intervals not exceeding 2.5 years.

TP22Lubricants for portable tank fittings (for example, gaskets, shut-off valves, flanges) must be oxygen compatible.

TP24The portable tank may be fitted with a device to prevent the build up of excess pressure due to the slow decomposition of the hazardous material being transported. The device must be in the vapor space when the tank is filled under maximum filling conditions. This device must also prevent an unacceptable amount of leakage of liquid in the case of overturning.

TP25Sulphur trioxide 99.95% pure and above may be transported in tanks without an inhibitor provided that it is maintained at a temperature equal to or above 32.5 ?C (90.5 ?F).

TP26The heating device must be exterior to the shell. For UN 3176, this requirement only applies when the hazardous material reacts dangerously with water.

TP27A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in ? 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.

TP28A portable tank having a minimum test pressure of 2.65 bar (265 kPa) may be used provided the calculated test pressure is 2.65 bar or less based on the MAWP of the hazardous material, as defined in ? 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.

TP29A portable tank having a minimum test pressure of 1.5 bar (150.0 kPa) may be used provided the calculated test pressure is 1.5 bar or less based on the MAWP of the hazardous materials, as defined in ? 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.

TP30This hazardous material may only be transported in insulated tanks.

TP31This hazardous material may only be transported in tanks in the solid state.

TP32Portable tanks may be used subject to the following conditions:

a. Each portable tank constructed of metal must be fitted with a pressure-relief device consisting of a reclosing spring loaded type, a frangible disc or a fusible element. The set to discharge for the spring loaded pressure relief device and the burst pressure for the frangible disc, as applicable, must not be greater than 2.65 bar for portable tanks with minimum test pressures greater than 4 bar;

b. The suitability for transport in tanks must be demonstrated using test 8(d) in Test Series 8 (see UN Manual of Tests and Criteria, Part 1, Sub-section 18.7) (IBR, see ? 171.7 of this subchapter) or an alternative means approved by the Associate Administrator.

TP33The portable tank instruction assigned for this substance applies for granular and powdered solids and for solids which are filled and discharged at temperatures above their melting point which are cooled and transported as a solid mass. Solid substances transported or offered for transport above their melting point are authorized for transportation in portable tanks conforming to the provisions of portable tank instruction T4 for solid substances of packing group III or T7 for solid substances of packing group II, unless a tank with more stringent requirements for minimum shell thickness, maximum allowable working pressure, pressure-relief devices or bottom outlets are assigned in which case the more stringent tank instruction and special provisions shall apply. Filling limits must be in accordance with portable tank special provision TP3. Solids meeting the definition of an elevated temperature material must be transported in accordance with the applicable requirements of this subchapter.

TP36For material assigned this portable tank special provision, portable tanks used to transport such material may be equipped with fusible elements in the vapor space of the portable

TP37IM portable tanks are only authorized for the shipment of hydrogen peroxide solutions in water containing 72% or less hydrogen peroxide by weight. Pressure relief devices shall be designed to prevent the entry of foreign matter, the leakage of liquid and the development of any dangerous excess pressure. In addition, the portable tank must be designed so that internal surfaces may be effectively cleaned and passivated. Each tank must be equipped with pressure relief devices conforming to the following requirements:

1 Total venting capacity in standard cubic feet hour (S.C.F.H.) per pound of hydrogen peroxide solution.

Concentration of hydrogen per peroxide solution Total 1

52% or less 11
Over 52%, but not greater than 60% 22
Over 60%, but not greater than 72% 32

TP38Each portable tank must be insulated with an insulating material so that the overall thermal conductance at 15.5 ?C (60 ?F) is no more than 1.5333 kilojoules per hour per square meter per degree Celsius (0.075 Btu per hour per square foot per degree Fahrenheit) temperature differential. Insulating materials may not promote corrosion to steel when wet.

TP39The portable tank instruction T4 prescribed may continue to be applied until December 31, 2018.

TP40The portable tank must not be transported when connected with spray application equipment.

TP41The portable tank instruction T9 may continue to be applied until December 31, 2018.

TP44Each portable tank must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of ? 173.24b(b) of this subchapter. Thickness of stainless steel for tank shell and heads must be the greater of 7.62 mm (0.300 inch) or the thickness required for a portable tank with a design pressure at least equal to 1.5 times the vapor pressure of the hazardous material at 46 ?C (115 ?F).

TP45Each portable tank must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of 173.24b(b) of this subchapter. Thickness of stainless steel for portable tank shells and heads must be the greater of 6.35 mm (0.250 inch) or the thickness required for a portable tank with a design pressure at least equal to 1.3 times the vapor pressure of the hazardous material at 46 ?C (115 ?F).

TP46Portable tanks in sodium metal service are not required to be hydrostatically retested.

(9) ?W? codes. These provisions apply only to transportation by water:

Code/Special ProvisionsW1 This substance in a non friable prill or granule form is not subject to the requirements of this subchapter when tested in accordance with the UN Manual of Test and Criteria (IBR, see ? 171.7 of this subchapter) and is found to not meet the definition or criteria for inclusion in Division 5.1.

W7Vessel stowage category for uranyl nitrate hexahydrate solution is ?D? as defined in ? 172.101(k)(4).

W8Vessel stowage category for pyrophoric thorium metal or pyrophoric uranium metal is ?D? as defined in ? 172.101(k)(4).

W9When offered for transportation by water, the following Specification packagings are not authorized unless approved by the Associate Administrator: woven plastic bags, plastic film bags, textile bags, paper bags, IBCs and bulk packagings.

W10When offered for transportation by vessel, the use of Large Packagings (see ? 171.8 of this subchapter) is prohibited.W41When offered for transportation by water, this material must be packaged in bales and be securely and tightly bound with rope, wire or similar means.

[Amdt. 172-123, 55 FR 52582, Dec. 21, 1990]

Editorial Note:

For Federal Register citations affecting ? 172.102, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.